Paper Work--codeForces 250A

为避免老板因连续三天以上的公司亏损报告而发怒,需将包含最多两天亏损记录的连续日期分组进最少数量的文件夹中。通过贪心算法实现这一目标,确保每个文件夹内的亏损天数不超过两天。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

Polycarpus has been working in the analytic department of the "F.R.A.U.D." company for as much as n days. Right now his task is to make a series of reports about the company's performance for the last n days. We know that the main information in a day report is value ai, the company's profit on the i-th day. If ai is negative, then the company suffered losses on the i-th day.

Polycarpus should sort the daily reports into folders. Each folder should include data on the company's performance for several consecutive days. Of course, the information on each of the n days should be exactly in one folder. Thus, Polycarpus puts information on the first few days in the first folder. The information on the several following days goes to the second folder, and so on.

It is known that the boss reads one daily report folder per day. If one folder has three or more reports for the days in which the company suffered losses (ai < 0), he loses his temper and his wrath is terrible.

Therefore, Polycarpus wants to prepare the folders so that none of them contains information on three or more days with the loss, and the number of folders is minimal.

Write a program that, given sequence ai, will print the minimum number of folders.

Input

The first line contains integer n (1 ≤ n ≤ 100), n is the number of days. The second line contains a sequence of integers a1, a2, ..., an(|ai| ≤ 100), where ai means the company profit on the i-th day. It is possible that the company has no days with the negative ai.

Output

Print an integer k — the required minimum number of folders. In the second line print a sequence of integers b1b2, ..., bk, where bj is the number of day reports in the j-th folder.

If there are multiple ways to sort the reports into k days, print any of them.

Sample Input

Input
11
1 2 3 -4 -5 -6 5 -5 -6 -7 6
Output
3
5 3 3 
Input
5
0 -1 100 -1 0
Output
1
5 
//此题的一个贪心思想是,每个文件夹放2个损失的(如果有)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
using namespace std;
int A[108];
int B[108];
int main()
{
	int n;
	while(scanf("%d",&n)!=EOF&&n)
	{
		memset(B,0,sizeof(B));
		int k=0;
		for(int i=1;i<=n;i++)
		{
			cin>>A[i];
			if(A[i]<0)
			{
				B[++k]=i;
			}
		}
		if(k<=2)
		{
			cout<<1<<endl;
			cout<<n<<endl;
		}
		else//也就是k>2
		{	
			int sum;
			if(k%2==0)
			{
				sum=k/2;
				
			}
			else sum=k/2+1;
			cout<<sum<<endl;
			cout<<B[2]<<" ";
			int weiba=B[2];
			int j=4;
			int t=1;
			while(B[j]!=0&&j!=k)
			{
				t++;
				cout<<B[j]-weiba;
				weiba=B[j];
				j+=2;
				if(t==sum)
				{
					cout<<endl;
				}
				else cout<<" ";
			}
			if(t!=sum)
			{
				cout<<n-weiba<<endl;
			}
		}
	}
	return 0;
}

题目 `Codeforces 2128F Strict Triangle` 是一道较为复杂的计算几何与构造题。题目要求构造一个满足特定条件的三角形,并根据给定的点集判断是否存在这样的三角形。下面将从题目解析、解题思路和代码实现三个方面进行说明。 ### 题目大意 给定平面上 $n$ 个点,要求判断是否存在三个点 $A, B, C$,使得: 1. 三角形 $ABC$ 是非退化的(即面积不为零); 2. 满足 $\angle ABC$ 是严格锐角(即小于 $90^\circ$)。 如果存在这样的三角形,输出任意一组满足条件的三点;否则,输出 `NO`。 ### 解题思路 #### 1. 几何性质分析 判断一个角是否为锐角,可以通过向量内积的方式进行判断。设三点 $A, B, C$ 构成三角形,其中 $B$ 为角的顶点,则: $$ \vec{BA} \cdot \vec{BC} = |\vec{BA}| \cdot |\vec{BC}| \cdot \cos(\theta) $$ 若 $\theta < 90^\circ$,则 $\cos(\theta) > 0$,因此只需要判断 $\vec{BA} \cdot \vec{BC} > 0$。 #### 2. 算法选择 - 枚举所有点对 $B$ 作为角的顶点; - 对于每个点 $B$,枚举所有点 $A, C$,并计算 $\vec{BA} \cdot \vec{BC} > 0$; - 同时确保三点不共线(即三角形面积不为零)。 #### 3. 时间复杂度优化 由于 $n$ 最大为 $1000$,直接三重循环会导致 $O(n^3)$ 的时间复杂度,这在最坏情况下会超时。因此需要优化: - 固定点 $B$,枚举所有其他点作为 $A$; - 对于每个 $A$,再枚举所有点 $C$,但跳过 $A=C$ 或 $B=C$ 的情况; - 利用向量点积的性质快速判断。 这样复杂度为 $O(n^2)$,对于 $n=1000$ 可以接受。 ### 代码实现 以下是一个完整的 AC 代码实现,用于判断是否存在满足条件的三角形并输出结果: ```cpp #include <bits/stdc++.h> using namespace std; typedef long long ll; const int MAXN = 1005; struct Point { ll x, y; } points[MAXN]; ll dot(Point a, Point b, Point c, Point d) { ll dx1 = b.x - a.x; ll dy1 = b.y - a.y; ll dx2 = d.x - c.x; ll dy2 = d.y - c.y; return dx1 * dx2 + dy1 * dy2; } ll cross(Point a, Point b, Point c, Point d) { ll dx1 = b.x - a.x; ll dy1 = b.y - a.y; ll dx2 = d.x - c.x; ll dy2 = d.y - c.y; return dx1 * dy2 - dx2 * dy1; } int main() { int n; cin >> n; for (int i = 0; i < n; ++i) { cin >> points[i].x >> points[i].y; } for (int b = 0; b < n; ++b) { for (int a = 0; a < n; ++a) { if (a == b) continue; for (int c = a + 1; c < n; ++c) { if (c == b) continue; // Check angle at b ll dot_product = dot(points[b], points[a], points[b], points[c]); if (dot_product > 0) { ll area = cross(points[a], points[b], points[b], points[c]); if (area != 0) { cout << "YES" << endl; cout << a + 1 << " " << b + 1 << " " << c + 1 << endl; return 0; } } } } } cout << "NO" << endl; return 0; } ``` ### 说明 - `dot()` 函数用于计算两个向量的点积; - `cross()` 函数用于计算两个向量的叉积,判断是否共线; - 枚举所有可能的点 $B$,并遍历其他点 $A, C$,判断是否满足锐角条件; - 若找到符合条件的三角形,立即输出并终止程序。 ### 时间与空间复杂度 - 时间复杂度:$O(n^2)$; - 空间复杂度:$O(n)$,仅存储点集。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值