1.算法思想
Laplacian Eigenmaps 与LLE方法类似,都是用于处理流形数据的降维方法。两者的目标也是相近的,都是为了找到高维数据的低维表示,同时保留数据中的局部结构。对于如何定义局部结构?在LLE方法中,定义每个数据点与它的近邻具有线性关系。Laplacian Eigenmaps的提出者给出与之不同的方案。
Laplacian Eigenmaps 方法中,核心的思想是通过计算数据点之间存在某种相似性来衡量局部结构。一旦有了相似性的概念,数据点彼此之间的相似性就可以用于优化低维数据点的位置,使得在低维表示下,以保持相同的相似性。
通常,局部距离 local distance 可作为相似性的一种度量。我们可以将这种距离相似性嵌入数据的表示中。现在的问题是如何具体地定义相似呢?
在数学上,从函数角度直观地理解,相似的输入就会得到一个高值输出,如果不相似,会得到一个低值。由于我们只知道数据在空间中的位置,我们能做的是,如果数据点的距离很短,希望相似度值很高,如果距离很远,它应该很小。因此,相似性的度量应该与距离成反比。
通常使用的是高斯核函数,类似于kernel method中高斯径向基函数。