Evaluating an SQL Trace

本文详细介绍了如何使用SQL性能分析工具评估跟踪文件,并通过解释关键字段和执行步骤来优化性能。包括时间戳、运行时间、程序名、操作类型、记录数等指标,以及SQL查询的执行流程和常见问题解决策略。

To evaluate a performance trace, select DISPLAY TRACE in the initial screen. A selection screen is displayed, and you can specify in the TRACE TYPE field the part of the trace you want to analyze. In this and the following sections, we will discuss the evaluation of each of the trace types separately. In practice, you can analyze all trace modes together.

Fields in the Dialog Box for Evaluating a Trace

FieldExplanation
TRACE FILENAMEName of t he trace file. Normally, this name should
not be changed .
TRACE TYPEThe default trace mode setting is SQL TRACE.
To analyze an RFC trace, enqueue trace, HTTP,
trace and buffer trace, select the corresponding check boxes.
TRACE PERIODPeriod in which the trace runs.
USER NAMEUser whose actions have been traced.
OBJECT NAMENames of specific tables to which the display
of trace results is to be restricted. Note that , by
default, t he tables D0l0*, D020*, and DDLOG are
not shown in the trace results. These tables contain
the ABAP coding and the buffer synchronization data.
EXECUTION TIMERestricts t he display to SOL statements that have a
certain execution time.
OPERATIONRestricts t he trace data to particular database
operations.

Executing trace

Next, click the EXECUTE button. The basic SQL trace list is displayed. 

Fields in an SQL Trace

FieldExplanation
HH:MM:SS.MSTime stamp in the form hour:minute:second.
millisecond.
DURATIONRuntime of an SOL statement, in microseconds. If
the runtime is more than 150,000 microseconds,
the corresponding row is red to identify that SOL
statement as having a "long runtime." However,
the value 150,000 is a somewhat arbitrary boundary.
PROGRAM NAMEName of the program from which the SOL
statement originates.
OBJECT NAMEName of the database table or database view.
OPERATIONOperation executed on the database, for example
Prepare: preparing ("parsing") a statement,
Open :opening a database cursor,
Fetch : transferring data from the database, and so on.
CURSDatabase cursor number.
RECORDSNumber of records read from the database.
RCDatabase system-specific return code.
STATEMENTShort form of the executed SOL statement. You
can display the complete statement by doubleclicking
the corresponding row.

Direct Read

An SQL statement that appears in accesses the table VBAK. The fields specified in the WHERE clause are key fields in the table. The result of the request can therefore only be either one record (Rec = 1) or no record (Rec = 0), depending on whether a table entry exists for the specified key. SQL statements in which all fields of the key of the respective table are specified as "same" are called fully qualified accesses or direct reads. A fully qualified database access should not take more than about 2 to 10 ms. However, in individual cases, an access may last up to 10 times longer, such as when blocks cannot be found in the database buffer and must be retrieved from the hard drive.

Basic Performance Trace List with Entries from SQL Trace and RFC Trace


The database access consists of two database operations, an Open/Reopen operation and a FETCH operation. The Reopen operation transfers the concrete values in the WHERE clause to the database. The FETCH operation locates the database data and transfers it to the application server.


Sequential read

A second access takes place in the VBAP table. Not all key fields in the WHERE clause are clearly specified with this access. As a result, multiple records can be transferred. However, in our example, five records are transferred (Rec - 5). The data records are transferred to the application server in packets, in one or more fetches (array fetch). An array fetch offers better performance than transferring individual records in a client/server environment.

The second access takes place via an efficient index; thus, the duration of execution also remains significantly less than 10 ms. The third access(again in the VBAK table) takes place via a field for which there is no efficient index. Thus, the duration of this statement is significantly longer than that of the previous statement.


Maximum number of records

The maximum number of records that can be transferred in a FETCH operation is determined by the SAP database interface as follows: every SAP work process has an input/output buffer for transferring data to or from the database. The SAP profile parameterdbs/io_buf _size specifies the size of this buffer. The number of records transferred from the database by a fetch is calculated as follows:

Number of records = dbs/io_buf _size I Length of a record to be read in bytes

The number of records per fetch depends on the Select clause of the SQL statement. If the number of fields to be transferred from the database is restricted by a Select list, more records fit into a single fetch than when Select * is used. The default value for the SAP profile parameter dbs/io_buf _size is 33,792 (bytes) and should not be changed unless recommended explicitly by SAP.


Guideline Value for Array Fetch

The guideline response time for optimal array fetches is under 10 ms per selected record. The actual runtime greatly depends on the WHERE clause, the index used, and how effectively the data is stored.


Declare, Prepare, and Open

Other database operations that may be listed in the SQL trace are Dec 1 are, Prepare, and Open. The Declare operation defines what is known as a cursor to manage data transfer between ABAP programs and a database, and also assigns an ID number to the cursor. This cursor ID is used for communication between SAP work processes and the database system.


Prepare operation

In the subsequent Prepare operation, the database process determines the access strategy for the statement. In the STATEMENT field, the statement is to be seen with a variable . To reduce the number of relatively time-consuming Prepare operations, each work process of an application server retains a certain number of already parsed SQL statements in a special buffer (SAP cursor cache). Each SAP work process buffers the operations DECLARE, PREPARE , OPEN, and EXEC in its SAP cursor cache. Once the work process has opened a cursor for a DECLARE operation, the same cursor can be used repeatedly until it is displaced from the SAP cursor cache after a specified time because the size of the cache is limited.


The database does not receive the concrete values of the WHERE clause (Mandt = 100 , and so on) until the OPEN operation is used. A PREPARE operation is necessary for only the first execution of a statement, as long as that statement has not been displaced from the SAP cursor cache. Subsequently, the statement, which has already been prepared (parsed), can always be reaccessed with OPEN or REOPEN.

First and subsequent executions

shows the SQL trace for the second run of the same report. Since the DECLARE and PREPARE operations are executed in the report's first run, our example shows only the OPEN operation.


Network problems

If you have identified an SQL statement with a long runtime, you should activate the trace again for further analysis. It is useful to perform the trace at a time of high system load and again at a time of low system load. If you find that the response times for database accesses are high only at particular times, this indicates throughput problems in the network or database access (for example, an I/0 bottleneck). For further information on these problems, please see Chapter 2, Section 2.2.2, Identifying Read/
Write (I/0) Problems. If, on the other hand, the response times for database access are poor in general (not only at particular times), the cause is probably an inefficient SQL statement, which should be optimized. When evaluating database response times, remember that the processing times of SQL statements are measured on the application server. The runtime shown in the trace includes not only the time required by the database to furnish the requested data, but also the time required to
transfer data between the database and the application server. If there is a performance problem in network communication, the runtimes of SQL statements will increase.





【电力系统】单机无穷大电力系统短路故障暂态稳定Simulink仿真(带说明文档)内容概要:本文档围绕“单机无穷大电力系统短路故障暂态稳定Simulink仿真”展开,提供了完整的仿真模型与说明文档,重点研究电力系统在发生短路故障后的暂态稳定性问题。通过Simulink搭建单机无穷大系统模型,模拟不同类型的短路故障(如三相短路),分析系统在故障期间及切除后的动态响应,包括发电机转子角度、转速、电压和功率等关键参数的变化,进而评估系统的暂态稳定能力。该仿真有助于理解电力系统稳定性机理,掌握暂态过程分析方法。; 适合人群:电气工程及相关专业的本科生、研究生,以及从事电力系统分析、运行与控制工作的科研人员和工程师。; 使用场景及目标:①学习电力系统暂态稳定的基本概念与分析方法;②掌握利用Simulink进行电力系统建模与仿真的技能;③研究短路故障对系统稳定性的影响及提高稳定性的措施(如故障清除时间优化);④辅助课程设计、毕业设计或科研项目中的系统仿真验证。; 阅读建议:建议结合电力系统稳定性理论知识进行学习,先理解仿真模型各模块的功能与参数设置,再运行仿真并仔细分析输出结果,尝试改变故障类型或系统参数以观察其对稳定性的影响,从而深化对暂态稳定问题的理解。
本研究聚焦于运用MATLAB平台,将支持向量机(SVM)应用于数据预测任务,并引入粒子群优化(PSO)算法对模型的关键参数进行自动调优。该研究属于机器学习领域的典型实践,其核心在于利用SVM构建分类模型,同时借助PSO的全局搜索能力,高效确定SVM的最优超参数配置,从而显著增强模型的整体预测效能。 支持向量机作为一种经典的监督学习方法,其基本原理是通过在高维特征空间中构造一个具有最大间隔的决策边界,以实现对样本数据的分类或回归分析。该算法擅长处理小规模样本集、非线性关系以及高维度特征识别问题,其有效性源于通过核函数将原始数据映射至更高维的空间,使得原本复杂的分类问题变得线性可分。 粒子群优化算法是一种模拟鸟群社会行为的群体智能优化技术。在该算法框架下,每个潜在解被视作一个“粒子”,粒子群在解空间中协同搜索,通过不断迭代更新自身速度与位置,并参考个体历史最优解和群体全局最优解的信息,逐步逼近问题的最优解。在本应用中,PSO被专门用于搜寻SVM中影响模型性能的两个关键参数——正则化参数C与核函数参数γ的最优组合。 项目所提供的实现代码涵盖了从数据加载、预处理(如标准化处理)、基础SVM模型构建到PSO优化流程的完整步骤。优化过程会针对不同的核函数(例如线性核、多项式核及径向基函数核等)进行参数寻优,并系统评估优化前后模型性能的差异。性能对比通常基于准确率、精确率、召回率及F1分数等多项分类指标展开,从而定量验证PSO算法在提升SVM模型分类能力方面的实际效果。 本研究通过一个具体的MATLAB实现案例,旨在演示如何将全局优化算法与机器学习模型相结合,以解决模型参数选择这一关键问题。通过此实践,研究者不仅能够深入理解SVM的工作原理,还能掌握利用智能优化技术提升模型泛化性能的有效方法,这对于机器学习在实际问题中的应用具有重要的参考价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
<think>好的,我现在需要解决用户在CDF(可能是某种计算框架或开发环境)中遇到的“error evaluating callback”问题。根据用户提供的引用内容,这类错误通常发生在Xilinx System Generator、Simulink或MyBatis等环境中,涉及回调函数执行时的参数或配置问题。 首先,我应该分析可能的原因。引用[1]、[2]和[3]提到Xilinx和Simulink中的回调错误,通常与参数名称错误、路径问题或依赖项缺失有关。例如,引用[3]中的错误是因为参数'PortConnectivity'不存在。引用[4]是MyBatis中的表达式评估错误,涉及属性不存在的问题。引用[5]提到了Fuzzy Logic Controller的参数评估错误。这些案例的共同点是配置错误或依赖问题。 接下来,我需要结合这些信息,总结出解决CDF框架中类似错误的步骤。可能的步骤包括检查回调函数参数是否正确、验证变量或属性是否存在、确保依赖项和路径正确、调试工具的使用以及更新软件版本。同时,用户可能需要具体的操作建议,比如如何检查参数名称,如何验证路径是否存在,或者如何逐步调试。 另外,用户提到的错误信息可能与特定框架相关,但如果没有具体的CDF文档或错误信息,我需要给出通用的解决方案。同时,需要注意引用中的例子,例如,在MyBatis中属性不存在的问题,可以类比到CDF中的变量是否存在。在Xilinx中的路径问题,可能对应到CDF中的文件或库路径配置是否正确。 最后,生成相关问题时要覆盖常见的原因,如参数检查、依赖管理、调试方法等,帮助用户进一步排查问题。</think>在CDF(计算数据框架)或其他开发环境中遇到“error evaluating callback”问题,通常与回调函数的定义、参数传递或依赖项配置有关。以下是分步解决方案: --- ### **1. 检查回调函数参数与语法** - **问题定位**:确认回调函数中引用的变量、属性或方法是否存在且命名正确。例如,引用[4]中因`startTime`属性不存在导致表达式评估失败。 - **操作步骤**: 1. 检查回调函数的代码,确认所有变量名、函数名与当前作用域中的定义一致。 2. 使用调试工具(如IDE断点或日志输出)验证参数值是否按预期传递。 3. 避免拼写错误或大小写不一致,例如`PortConnectivity`与`portConnectivity`可能不兼容[^3]。 --- ### **2. 验证依赖项与路径配置** - **问题定位**:若回调函数依赖外部库、文件或模块,路径错误或缺失会导致评估失败。例如,Xilinx工具链因路径配置问题报错[^1][^2]。 - **操作步骤**: 1. 检查框架的库路径是否包含回调函数所需的依赖项。 2. 确保外部文件(如配置文件、数据文件)的路径正确,绝对路径优先于相对路径。 3. 重新安装或更新依赖库(如更新System Generator或Simulink组件[^2])。 --- ### **3. 检查回调函数的作用域与生命周期** - **问题定位**:若回调函数访问了已被销毁的对象或超出作用域的变量,可能引发错误。 - **操作步骤**: 1. 确认回调函数执行时,相关对象(如UI组件、数据模型)仍处于活跃状态。 2. 使用闭包或绑定机制确保变量在回调执行期间有效。 --- ### **4. 调试与日志记录** - **问题定位**:通过日志定位错误发生的具体位置。例如,Simulink的`InitFcn`回调错误可通过逐步执行代码排查[^3]。 - **操作步骤**: 1. 在回调函数入口添加日志输出,确认函数是否被触发。 2. 使用`try-catch`块捕获异常,并输出详细错误信息。 3. 对于图形化框架(如Simulink),检查模块参数配置界面是否有红色错误提示[^5]。 --- ### **5. 框架或工具链更新** - **问题定位**:旧版本软件可能存在已知的回调函数兼容性问题。例如,Vivado System Generator需更新至支持当前OS的版本[^2]。 - **操作步骤**: 1. 检查官方文档或社区,确认是否存在相关问题的修复补丁。 2. 升级框架或工具至最新稳定版本。 --- ### **示例:Simulink回调错误修复** ```matlab % 错误示例:尝试访问不存在的参数 'PortConnectivity' set_param(gcb, 'PortConnectivity', 'Custom'); % 修正:使用正确的参数名 'Ports' set_param(gcb, 'Ports', 'Custom'); ``` 通过比对文档确认参数名称,可避免类似引用[3]的错误。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值