pytorch利用resnet50实现cifar10准确率到95%以上

目录

前言

因为课程需要,老师要求使用resnet18或者resnet50将cifar10训练到精度到达95%,试过了网上其他很多方法,发现精度最高的是在预处理化的时候,图片resize到32,32,并且padding=4进行填充,并且优化器用SGD,准确率最高,但是准确率最高也是到88.8%。后来和上课的同学讨论,发现先将图片resize到(224,224)再进行翻转等操作可以稳定实现超过95%的准确率。大概训练4-5个epoch就可以了。
注:进行了迁移学习,加载了预训练模型

代码

废话不多说,直接上代码
注:因为CPU训练速度太慢了,尤其是将图片拉到224,224这么大,故最好使用GPU训练。并且使用了tensorboard将损失给画了出来

import torch
from torch.utils.tensorboard.summary import image
import torchvision
import torch.nn.functional as F
import torch.nn as nn
import torchvision.transforms as transforms
import torch.optim as optim


from torch.utils.tensorboard import SummaryWriter
myWriter = SummaryWriter('./tensorboard/log/')



myTransforms = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.RandomHorizontalFlip(p=0.5),
    transforms.ToTensor(),
    transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])


#  load
train_dataset = torchvision.datasets.CIFAR10(root='./cifar-10-python/', train=True, download=True, transform=myTransforms)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=0)

test_dataset = torchvision.datasets.CIFAR10(root='./cifar-10-python/', train=False, download=True, transform=myTransforms)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=4, shuffle=True, num_workers=0)



# 定义模型
myModel = torchvision.models.resnet50(pretrained=True)
# 将原来的ResNet18的最后两层全连接层拿掉,替换成一个输出单元为10的全连接层
inchannel = myModel.fc.in_features
myModel.fc = nn.Linear(inchannel, 10)

# 损失函数及优化器
# GPU加速
myDevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
myModel = myModel.to(myDevice)


learning_rate=0.001
myOptimzier = optim.SGD(myModel.parameters(), lr = learning_rate, momentum=0.9)
myLoss = torch.nn.CrossEntropyLoss()

for _epoch in range(10):
    training_loss = 0.0
    for _step, input_data in enumerate(train_loader):
        image, label = input_data[0].to(myDevice), input_data[1].to(myDevice)   # GPU加速
        predict_label = myModel.forward(image)
       
        loss = myLoss(predict_label, label)

        myWriter.add_scalar('training loss', loss, global_step = _epoch*len(train_loader) + _step)

        myOptimzier.zero_grad()
        loss.backward()
        myOptimzier.step()

        training_loss = training_loss + loss.item()
        if _step % 10 == 0 :
            print('[iteration - %3d] training loss: %.3f' % (_epoch*len(train_loader) + _step, training_loss/10))
            training_loss = 0.0
            print()
    correct = 0
    total = 0
    #torch.save(myModel, 'Resnet50_Own.pkl') # 保存整个模型
    myModel.eval()
    for images,labels in test_loader:
        # GPU加速
        images = images.to(myDevice)
        labels = labels.to(myDevice)     
        outputs = myModel(images)   # 在非训练的时候是需要加的,没有这句代码,一些网络层的值会发生变动,不会固定
        numbers,predicted = torch.max(outputs.data,1)
        total += labels.size(0)
        correct += (predicted==labels).sum().item()

    print('Testing Accuracy : %.3f %%' % ( 100 * correct / total))
    myWriter.add_scalar('test_Accuracy',100 * correct / total)
DQN(Deep Q-Network)是一种使用深度神经网络实现的强化学习算法,用于解决离散动作空间的问题。在PyTorch中实现DQN可以分为以下几个步骤: 1. 定义神经网络:使用PyTorch定义一个包含多个全连接层的神经网络,输入为状态空间的维度,输出为动作空间的维度。 ```python import torch.nn as nn import torch.nn.functional as F class QNet(nn.Module): def __init__(self, state_dim, action_dim): super(QNet, self).__init__() self.fc1 = nn.Linear(state_dim, 64) self.fc2 = nn.Linear(64, 64) self.fc3 = nn.Linear(64, action_dim) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x ``` 2. 定义经验回放缓存:包含多条经验,每条经验包含一个状态、一个动作、一个奖励和下一个状态。 ```python import random class ReplayBuffer(object): def __init__(self, max_size): self.buffer = [] self.max_size = max_size def push(self, state, action, reward, next_state): if len(self.buffer) < self.max_size: self.buffer.append((state, action, reward, next_state)) else: self.buffer.pop(0) self.buffer.append((state, action, reward, next_state)) def sample(self, batch_size): state, action, reward, next_state = zip(*random.sample(self.buffer, batch_size)) return torch.stack(state), torch.tensor(action), torch.tensor(reward), torch.stack(next_state) ``` 3. 定义DQN算法:使用PyTorch定义DQN算法,包含训练和预测两个方法。 ```python class DQN(object): def __init__(self, state_dim, action_dim, gamma, epsilon, lr): self.qnet = QNet(state_dim, action_dim) self.target_qnet = QNet(state_dim, action_dim) self.gamma = gamma self.epsilon = epsilon self.lr = lr self.optimizer = torch.optim.Adam(self.qnet.parameters(), lr=self.lr) self.buffer = ReplayBuffer(100000) self.loss_fn = nn.MSELoss() def act(self, state): if random.random() < self.epsilon: return random.randint(0, action_dim - 1) else: with torch.no_grad(): q_values = self.qnet(state) return q_values.argmax().item() def train(self, batch_size): state, action, reward, next_state = self.buffer.sample(batch_size) q_values = self.qnet(state).gather(1, action.unsqueeze(1)).squeeze(1) target_q_values = self.target_qnet(next_state).max(1)[0].detach() expected_q_values = reward + self.gamma * target_q_values loss = self.loss_fn(q_values, expected_q_values) self.optimizer.zero_grad() loss.backward() self.optimizer.step() def update_target_qnet(self): self.target_qnet.load_state_dict(self.qnet.state_dict()) ``` 4. 训练模型:使用DQN算法进行训练,并更新目标Q网络。 ```python dqn = DQN(state_dim, action_dim, gamma=0.99, epsilon=1.0, lr=0.001) for episode in range(num_episodes): state = env.reset() total_reward = 0 for step in range(max_steps): action = dqn.act(torch.tensor(state, dtype=torch.float32)) next_state, reward, done, _ = env.step(action) dqn.buffer.push(torch.tensor(state, dtype=torch.float32), action, reward, torch.tensor(next_state, dtype=torch.float32)) state = next_state total_reward += reward if len(dqn.buffer.buffer) > batch_size: dqn.train(batch_size) if step % target_update == 0: dqn.update_target_qnet() if done: break dqn.epsilon = max(0.01, dqn.epsilon * 0.995) ``` 5. 测试模型:使用训练好的模型进行测试。 ```python total_reward = 0 state = env.reset() while True: action = dqn.act(torch.tensor(state, dtype=torch.float32)) next_state, reward, done, _ = env.step(action) state = next_state total_reward += reward if done: break print("Total reward: {}".format(total_reward)) ``` 以上就是在PyTorch中实现DQN强化学习的基本步骤。需要注意的是,DQN算法中还有很多细节和超参数需要调整,具体实现过程需要根据具体问题进行调整。
评论 37
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

暮尘依旧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值