Given a binary search tree, write a function kthSmallest to find the
kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
Hint:
- Try to utilize the property of a BST.
- What if you could modify the BST node's structure?
- The optimal runtime complexity is O(height of BST).
solution:
Inorder traverse, get kth element from that result. complexity is O(n)
public class Solution {
List<Integer> path = new ArrayList<>();
public int kthSmallest(TreeNode root, int k) {
inorder(root);
return path.get(k-1);
}
public void inorder(TreeNode root) {
if(root != null){
inorder(root.left);
path.add(root.val);
inorder(root.right);
}
}
}

本文介绍了一种寻找二叉搜索树中第K小元素的方法,通过中序遍历的方式实现,确保了找到的元素是第K小。同时讨论了在频繁修改二叉搜索树的情况下如何优化查找效率。
1062

被折叠的 条评论
为什么被折叠?



