1. Container with most water
Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container.
容积总是由最短板决定,每次移动短板找出最大容积
c++
int maxArea(vector<int> &height) {
int start =0;
int end = height.size()-1;
int maxV = INT_MIN;
while(start<end)
{
int contain = min(height[end], height[start]) * (end-start);
maxV = max(maxV, contain);
if(height[start]<= height[end])
{
start++;
}
else
{
end--;
}
}
return maxV;
}java
public int maxArea(int[] height) {
if(height.length<2) return 0;
int maxV = 0;
int start =0;
int end = height.length-1;
while(start<end){
int area = Math.min(height[start], height[end])*(end-start);
maxV = Math.max(maxV, area);
if(height[start]>height[end])
end--;
else {
start++;
}
}
return maxV;
}2. Trapping rain water
Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.

The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
思路,坐标的最大左右边相减就是该坐标点容积1. 从左到右扫描,找出每个坐标的最大左值
2. 从右到左扫描,找出每个坐标最大右值
3. 累加每个容积。
c++
int trap(int A[], int n) {
if(n<2) return 0;
int *maxL = new int[n], *maxR = new int[n];
int maxLR = A[0];
maxL[0] = 0;
//from left to right cal max lvalue
for(int i=1; i<n-1; i++){
maxL[i] = maxLR;
if(A[i]>maxLR){
maxLR = A[i];
}
}
maxLR = A[n-1];
maxR[n-1] = 0;
int ttrap = 0, ctrap = 0;
for(int i=n-2; i>0;i--){
maxR[i] = maxLR;
ctrap = min(maxL[i], maxR[i]) - A[i];
if(ctrap>0)
ttrap+= ctrap;
if(maxLR < A[i])
maxLR = A[i];
}
delete maxL, maxR;
return ttrap;
}java
public int trap(int[] A) {
if(A.length<2) return 0;
int len = A.length;
int []maxL = new int [len];
int maxLR = A[0];
maxL[0] = 0;
for(int i=1;i<len;i++){
maxL[i] = maxLR;
if(A[i]>maxLR)
maxLR = A[i];
}
maxLR = A[len-1];
int []maxR = new int[len];
maxR[len-1] = 0;
int trap = 0;
for(int i=len-2;i>=0;i--){
maxR[i] = maxLR;
int ctrap = Math.min(maxL[i], maxR[i])-A[i];
if(ctrap>0) trap+=ctrap;
if(A[i]>maxLR)
maxLR = A[i];
}
return trap;
}

这篇博客探讨了LeetCode中的两个水箱问题:1. Container with most water,找到能容纳最多水的容器;2. Trapping rain water,计算雨水在地形中能捕获的水量。解题策略包括从两端寻找高度并计算容积。提供了C++和Java的实现方案。
1490

被折叠的 条评论
为什么被折叠?



