1140 Look-and-say Sequence

本文介绍了一种特殊的整数序列——Look-and-say数列,并提供了一个C++实现方案来生成给定数字D的第N项。该数列通过描述前一项的构成来生成下一项。

分析:简单题,一次过,注意maxn为40,所以用string存储比较好。
Look-and-say sequence is a sequence of integers as the following:

D, D1, D111, D113, D11231, D112213111, …
where D is in [0, 9] except 1. The (n+1)st number is a kind of description of the nth number. For example, the 2nd number means that there is one D in the 1st number, and hence it is D1; the 2nd number consists of one D (corresponding to D1) and one 1 (corresponding to 11), therefore the 3rd number is D111; or since the 4th number is D113, it consists of one D, two 1’s, and one 3, so the next number must be D11231. This definition works for D = 1 as well. Now you are supposed to calculate the Nth number in a look-and-say sequence of a given digit D.

Input Specification:
Each input file contains one test case, which gives D (in [0, 9]) and a positive integer N (≤ 40), separated by a space.

Output Specification:
Print in a line the Nth number in a look-and-say sequence of D.

Sample Input:
1 8
Sample Output:
1123123111
代码

#include<stdio.h>
#include<string>
#include<iostream>
using namespace std;

const int maxn = 41;
int main(){
    int D, N;
    scanf("%d %d", &D, &N);
    string strD = to_string(D);
    string bfstr = strD;
    for(int i = 0; i < N - 1; i++){
    	int count = 1;
    	string newstr = "";
        for(int j = 0; j < bfstr.length(); j++){
        	if(j + 1 < bfstr.length()){
        		if(bfstr[j] == bfstr[j + 1]){
        			count++;
				}else{
					newstr += bfstr[j] + to_string(count);
					count = 1;
				}
			}else{
				newstr += bfstr[j] + to_string(count);
				count = 1;
			}
		}
        bfstr = newstr;
    }
    cout << bfstr;
}
举个具体的例子吧,假设base_events = {{0.0, {“LH”, “RF”, “RH”}}, // -> 0111 {0.4, {“LF”, “LH”, “RH”}}, // -> 1101{0.8, {“LF”, “RF”, “RH”}}, // -> 1011{1.2, {“LF”, “LH”, “RF”}}, // -> 1110{1.6, {“LH”, “RF”, “RH”}} // -> 0111}; double start_time = 0.2;所以base_events中时间点形成的序列为a=[0, 0.4, 0.8, 1.2, 1.6],可以得出一个映射序列b=[0, 0.4-start_time, 0.8-start_time, 1.2-start_time, 1.6-start_time](第二项之所以为0.4-start_time,是因为start_time在a序列的[0, 0.4)中),映射序列b所对应的接触序列为[{“LH”, “RF”, “RH”},{“LF”, “LH”, “RH”}, {“LF”, “RF”, “RH”}, {“LF”, “LH”, “RF”} ,{“LH”, “RF”, “RH”} ],sequence即为b和接触序列的组合。 假设base_events = {{0.0, {“LH”, “RF”, “RH”}}, // -> 0111 {0.4, {“LF”, “LH”, “RH”}}, // -> 1101{0.8, {“LF”, “RF”, “RH”}}, // -> 1011{1.2, {“LF”, “LH”, “RF”}}, // -> 1110{1.6, {“LH”, “RF”, “RH”}} // -> 0111}; double start_time = 0.8;所以base_events中时间点形成的序列为a=[0, 0.4, 0.8, 1.2, 1.6],可以得出一个映射序列b=[0, 1.2-start_time, 1.6-start_time, 2.0-start_time, 2.4-start_time](第二项之所以为0.4-start_time,是因为start_time在a序列的[0, 0.4)中),映射序列b所对应的接触序列[ {“LF”, “RF”, “RH”}, {“LF”, “LH”, “RF”} ,{“LH”, “RF”, “RH”},,{“LF”, “LH”, “RH”}, {“LF”, “RF”, “RH”}],sequence即为b和接触序列的组合。特别的当start_time=1.6时,start_time=0
09-22
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值