Kanade's sum
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 2859 Accepted Submission(s): 1182
Problem Description
Give you an array
A[1..n]
of length
n
.
Let f(l,r,k) be the k-th largest element of A[l..r] .
Specially , f(l,r,k)=0 if r−l+1<k .
Give you k , you need to calculate ∑nl=1∑nr=lf(l,r,k)
There are T test cases.
1≤T≤10
k≤min(n,80)
A[1..n] is a permutation of [1..n]
∑n≤5∗105
Let f(l,r,k) be the k-th largest element of A[l..r] .
Specially , f(l,r,k)=0 if r−l+1<k .
Give you k , you need to calculate ∑nl=1∑nr=lf(l,r,k)
There are T test cases.
1≤T≤10
k≤min(n,80)
A[1..n] is a permutation of [1..n]
∑n≤5∗105
Input
There is only one integer T on first line.
For each test case,there are only two integers n , k on first line,and the second line consists of n integers which means the array A[1..n]
For each test case,there are only two integers n , k on first line,and the second line consists of n integers which means the array A[1..n]
Output
For each test case,output an integer, which means the answer.
Sample Input
1 5 2 1 2 3 4 5
Sample Output
30
Source
Recommend
liuyiding
题意:给一个数组,找到所有区间的第k大数求和
对于每一个数x,我们只需要在x的左边找k个比x大的数,x的右边找k个比x大的数,线性扫一遍就能知道有多少个区间包含x而且x是区间第k大。
用链表维护,从小到大枚举所以可以直接删除。
#include <map>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
const int MAXN=1000100;
const int mod=1e9+7;
int a[MAXN],pos[MAXN];
int pre[MAXN],nxt[MAXN];
void del(int x){
pre[nxt[x]]=pre[x];
nxt[pre[x]]=nxt[x];
}
int n,k;
long long L[100],R[100];
long long solve(int x){
int l=0,r=0;
//往前跳k步
for(int i=x;i&&l<=k;i=pre[i]){
L[++l]=i-pre[i];//中间距离多少个数
}
//往后跳k步
for(int i=x;i<=n&&r<=k;i=nxt[i]){
R[++r]=nxt[i]-i;
}
long long ans=0;
for(int i=1;i<=l;i++){
if(k-i+1<=r&&k-i+1>=1){
ans+=L[i]*R[k-i+1];
}
}
return ans;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++){
scanf("%d",a+i);
pos[a[i]]=i;
}
for(int i=0;i<=n+1;i++){
pre[i]=i-1;
nxt[i]=i+1;
}
pre[0]=0,nxt[n+1]=n+1;
long long res=0;
for(int i=1;i<=n;i++){
res+=solve(pos[i])*i;
//因为是从小到大来算的,所以可以直接删除
del(pos[i]);
}
printf("%lld\n",res);
}
}


被折叠的 条评论
为什么被折叠?



