POJ1743 Musical Theme(后缀数组,高度数组分组)

本文介绍了一种算法,用于从一系列音符中找出最长且不重叠的重复子串,即音乐主题。通过二分查找和高度数组分组的方法,确保了找到的主题至少包含五个音符,并能在整个旋律中找到其至少一次的非重叠重复出现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Musical Theme
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 29855 Accepted: 9996

Description

A musical melody is represented as a sequence of N (1<=N<=20000)notes that are integers in the range 1..88, each representing a key on the piano. It is unfortunate but true that this representation of melodies ignores the notion of musical timing; but, this programming task is about notes and not timings. 
Many composers structure their music around a repeating &qout;theme&qout;, which, being a subsequence of an entire melody, is a sequence of integers in our representation. A subsequence of a melody is a theme if it: 
  • is at least five notes long 
  • appears (potentially transposed -- see below) again somewhere else in the piece of music 
  • is disjoint from (i.e., non-overlapping with) at least one of its other appearance(s) 

Transposed means that a constant positive or negative value is added to every note value in the theme subsequence. 
Given a melody, compute the length (number of notes) of the longest theme. 
One second time limit for this problem's solutions! 

Input

The input contains several test cases. The first line of each test case contains the integer N. The following n integers represent the sequence of notes. 
The last test case is followed by one zero. 

Output

For each test case, the output file should contain a single line with a single integer that represents the length of the longest theme. If there are no themes, output 0. 

Sample Input

30
25 27 30 34 39 45 52 60 69 79 69 60 52 45 39 34 30 26 22 18
82 78 74 70 66 67 64 60 65 80
0

Sample Output

5

Hint

Use scanf instead of cin to reduce the read time.


求最长的不重叠的重复子串。

二分答案,再按照高度数组分组。只要一组内的有两个子串不重叠即可。

有一个坑点是,他说可以把一个子串的值同时增大一部分,只要和另一个子串重复也是可以的。所以要先做差值的处理。


#include<cstdio>
#include<cstring>
#include <string>
#include <iostream>
#include <algorithm>
using namespace std;
const int MAXN=20000+10;
const int INF=1e9+7;
int n,k;
int rnk[MAXN+1];
int tmp[MAXN+1];

//比较(rnk[i],rnk[i+k])和(rnk[j],rnk[j+k])
bool compare_sa(int i,int j){
    if(rnk[i]!=rnk[j])
        return rnk[i]<rnk[j];
    else{
        int ri=i+k<=n?rnk[i+k]:-1;
        int rj=j+k<=n?rnk[j+k]:-1;
        return ri<rj;
    }
}
//rank用来记录字符串的排序,sa用来记录开头字符的位置,S用来记录字符串
//第一个通常是空字符串
void construct_sa(int *S,int *sa){
    //初始长度为1,rank直接取字符的编码.
    for(int i=0;i<=n;i++){
        sa[i]=i;
        rnk[i]=i<n?S[i]:-1;
    }
    
    //利用对长度为k的排序的结果对长度为2k的排序
    for(k=1;k<=n;k*=2){
        sort(sa,sa+n+1,compare_sa);
        
        //先在tmp中临时储存新计算的rank,再转存回rank中
        tmp[sa[0]]=0;
        for(int i=1;i<=n;i++){
            tmp[sa[i]]=tmp[sa[i-1]]+(compare_sa(sa[i-1],sa[i])?1:0);
        }
        for(int i=0;i<=n;i++){
            rnk[i]=tmp[i];
        }
    }
}


//高度数组lcp的计算
void construct_lcp(int *S,int *sa,int *lcp){
    for(int i=0;i<=n;i++) rnk[sa[i]]=i;
    int h=0;
    lcp[sa[0]]=0;
    for(int i=0;i<n;i++){
        //计算字符串中从位置i开始的后缀及其在后缀数组中的前一个后缀的lcp
        int j=sa[rnk[i]-1];
        
        //将h先减去首字母的1长度,在保持前缀相同的前提下不断地增加
        if(h>0) h--;
        for(;j+h<n&&i+h<n;h++){
            if(S[j+h]!=S[i+h]) break;
        }
        lcp[rnk[i]-1]=h;
    }
}

int sa[MAXN],lcp[MAXN];
int a[MAXN];
void init(){
    memset(sa,0,sizeof sa);
    memset(lcp,0,sizeof lcp);
    memset(rnk,0,sizeof rnk);
    memset(tmp,0,sizeof tmp);
}

bool C(int x){
    int pre=1;
    int MAX=0;
    int MIN=INF;
    for(int i=1;i<=n;i++){
        MAX=max(sa[i],MAX);
        MIN=min(sa[i],MIN);
        if(lcp[i]<x||i==n){
            if(MAX-MIN>=x&&i>pre){
                return true;
            }
            pre=i;
            MAX=0;
            MIN=INF;
        }
    }
    return false;
}

int main(){
    while(scanf("%d",&n)!=EOF&&n){
        for(int i=0;i<n;i++){
            scanf("%d",a+i);
        }
        n--;
        for(int i=0;i<n;i++){
            a[i]=a[i+1]-a[i]+100;
        }
        a[n]=0;
        init();
        construct_sa(a, sa);
        construct_lcp(a, sa, lcp);
        int l=0,r=n+1;
        while(r>l+1){
            int m=(l+r)>>1;
            if(C(m)){
                l=m;
            }else{
                r=m;
            }
        }
        l++;
        if(l>=5){
            printf("%d\n",l);
        }else{
            printf("0\n");
        }
    }
}









评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值