欢迎使用优快云-markdown编辑器

本文介绍了一种图像细化算法的具体实现过程,包括初始化图像数据、应用查找表进行像素值转换及迭代细化直至收敛。通过定义权重矩阵和使用特定的查找表(LUT),实现了对输入图像的细化处理。
#define INIT_IMAGE(Img, wid, hei, widstep){if(Img.imageData != 0) delete [] Img.imageData;\
    Img.imageData = new BYTE [(widstep) * (hei)]; memset(Img.imageData, 0, sizeof(BYTE) * (widstep) * (hei));\
    Img.width = (wid); Img.height = hei; Img.widthstep = widstep;}

//释放
#define RLSE_BUFFER(x) {if (x != 0) delete [] x; x = NULL;}

#define MATRIX_REF(PR, NUMROWS, R, C) \
    (*((PR) + (NUMROWS)*(C) + (R)))
static int weights3[3][3] = { {1, 8, 64}, {2, 16, 128}, {4, 32, 256} };
int iptNhood3Offset(unsigned char *pBWin, int numRows, int numCols,
    int r, int c)
{
    int minR, maxR, minC, maxC;
    int rr, cc;
    int result = 0;

    if (r == 0) 
    {
        minR = 1;
    } 
    else 
    {
        minR = 0;
    }

    if (r == (numRows-1)) 
    {
        maxR = 1;
    } 
    else 
    {
        maxR = 2;
    }

    if (c == 0) 
    {
        minC = 1;
    } 
    else 
    {
        minC = 0;
    }

    if (c == (numCols-1)) 
    {
        maxC = 1;
    } 
    else 
    {
        maxC = 2;
    }

    for (rr = minR; rr <= maxR; rr++) 
    {
        for (cc = minC; cc <= maxC; cc++) 
        {
            result += weights3[rr][cc] * 
                (MATRIX_REF(pBWin, numRows, r + rr - 1, c + cc - 1) != 0);
        }
    }

    return(result);
}
void iptMyapplylutc(IMAGE BWin, IMAGE& BWout, BYTE* lut) 
{    
    int numRows, numCols;
    int r, c;
    unsigned char *pBWin;
    unsigned char *plut;
    unsigned char *pBWout;

    pBWin = BWin.imageData;
    plut = lut;
    pBWout = BWout.imageData; 
    numRows = BWin.height; 
    numCols = BWin.width;  
    for (c = 0; c < numCols; c++) 
    {
        for (r = 0; r < numRows; r++) 
        {
            MATRIX_REF(pBWout, numRows, r, c) = (unsigned char)
                (*(plut + iptNhood3Offset(pBWin, numRows, numCols, r, c)) == 0? 0: 255);
        }
    }
}
//图像细化导出函数
void Thin(IMAGE Src, IMAGE& Dst, int n)
{
    int i, j;
    int wid = Src.width;
    int hei = Src.height;
    int widEff = Src.widthstep;
    int nSize = wid * hei * sizeof(BYTE);

    IMAGE mySrc, myDst,c, lastc, image_iter1;  
    mySrc.imageData = NULL; 
    INIT_IMAGE(mySrc, wid, hei, wid);
    myDst.imageData = NULL; 
    INIT_IMAGE(myDst, wid, hei, wid);
    c.imageData = NULL; 
    INIT_IMAGE(c, wid, hei, wid);
    lastc.imageData = NULL; 
    INIT_IMAGE(lastc, wid, hei, wid);
    image_iter1.imageData = NULL; 
    INIT_IMAGE(image_iter1, wid, hei, wid);

    //mySrc, myDst,...
    for (i = 0; i < hei; i++)
    {
        for (j = 0; j < wid; j++)
        {
            *(mySrc.imageData + j * hei + i)  = *(Src.imageData + i * widEff + j);
            *(myDst.imageData + j * hei + i)  = *(Src.imageData + i * widEff + j);
            *(c.imageData + j * hei + i)  = *(Src.imageData + i * widEff + j);
            *(lastc.imageData + j * hei + i)  = *(Src.imageData + i * widEff + j);
            *(image_iter1.imageData + j * hei + i)  = *(Src.imageData + i * widEff + j);
        }
    }
    unsigned char lut1[512] = 
    { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,1
    ,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,
    1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1
    ,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,
    1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1
    ,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,
    1,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1
    ,1,1,1,1,1,1,1,1,1,1,1,1};
    unsigned char lut2[512] = 
    {  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,1,1,0,0,1,1,0,1,1,1,0,0,
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,1,1,0,0,1,1,0,1,1,1,0,0,0,
    0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,
    0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,
    0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,1,1,0,0,1,1,0,1,1,1,0,0,0,0,0,0,
    0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,1,1,0,0,1,1,0,1,1,1};

    int iter = 1;
    bool done = 0;
    bool equalC;
    while (!done)
    {
        memcpy(lastc.imageData, c.imageData, nSize);
        iptMyapplylutc(c, image_iter1, lut1);
        iptMyapplylutc(image_iter1, c, lut2);
        for (i = 0; i < nSize; i++)
        { 
            if ( *(lastc.imageData+i) != *(c.imageData+i) ) 
            {
                equalC = 0; 
                break;
            }
        }
        done = ((iter >= n) | equalC);
        iter++;
    }
    //返回结果
    for (i = 0; i < hei; i++)
    {
        for (j = 0; j < wid; j++)
        {
            *(Dst.imageData + i * widEff + j)  = *(c.imageData + j * hei + i);
        }
    }

    //释放空间
    RLSE_BUFFER(mySrc.imageData);
    RLSE_BUFFER(myDst.imageData);
    RLSE_BUFFER(c.imageData);
    RLSE_BUFFER(lastc.imageData);
    RLSE_BUFFER(image_iter1.imageData);
}
内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值