欢迎使用优快云-markdown编辑器

本文介绍了一种图像细化算法的具体实现过程,包括初始化图像数据、应用查找表进行像素值转换及迭代细化直至收敛。通过定义权重矩阵和使用特定的查找表(LUT),实现了对输入图像的细化处理。
#define INIT_IMAGE(Img, wid, hei, widstep){if(Img.imageData != 0) delete [] Img.imageData;\
    Img.imageData = new BYTE [(widstep) * (hei)]; memset(Img.imageData, 0, sizeof(BYTE) * (widstep) * (hei));\
    Img.width = (wid); Img.height = hei; Img.widthstep = widstep;}

//释放
#define RLSE_BUFFER(x) {if (x != 0) delete [] x; x = NULL;}

#define MATRIX_REF(PR, NUMROWS, R, C) \
    (*((PR) + (NUMROWS)*(C) + (R)))
static int weights3[3][3] = { {1, 8, 64}, {2, 16, 128}, {4, 32, 256} };
int iptNhood3Offset(unsigned char *pBWin, int numRows, int numCols,
    int r, int c)
{
    int minR, maxR, minC, maxC;
    int rr, cc;
    int result = 0;

    if (r == 0) 
    {
        minR = 1;
    } 
    else 
    {
        minR = 0;
    }

    if (r == (numRows-1)) 
    {
        maxR = 1;
    } 
    else 
    {
        maxR = 2;
    }

    if (c == 0) 
    {
        minC = 1;
    } 
    else 
    {
        minC = 0;
    }

    if (c == (numCols-1)) 
    {
        maxC = 1;
    } 
    else 
    {
        maxC = 2;
    }

    for (rr = minR; rr <= maxR; rr++) 
    {
        for (cc = minC; cc <= maxC; cc++) 
        {
            result += weights3[rr][cc] * 
                (MATRIX_REF(pBWin, numRows, r + rr - 1, c + cc - 1) != 0);
        }
    }

    return(result);
}
void iptMyapplylutc(IMAGE BWin, IMAGE& BWout, BYTE* lut) 
{    
    int numRows, numCols;
    int r, c;
    unsigned char *pBWin;
    unsigned char *plut;
    unsigned char *pBWout;

    pBWin = BWin.imageData;
    plut = lut;
    pBWout = BWout.imageData; 
    numRows = BWin.height; 
    numCols = BWin.width;  
    for (c = 0; c < numCols; c++) 
    {
        for (r = 0; r < numRows; r++) 
        {
            MATRIX_REF(pBWout, numRows, r, c) = (unsigned char)
                (*(plut + iptNhood3Offset(pBWin, numRows, numCols, r, c)) == 0? 0: 255);
        }
    }
}
//图像细化导出函数
void Thin(IMAGE Src, IMAGE& Dst, int n)
{
    int i, j;
    int wid = Src.width;
    int hei = Src.height;
    int widEff = Src.widthstep;
    int nSize = wid * hei * sizeof(BYTE);

    IMAGE mySrc, myDst,c, lastc, image_iter1;  
    mySrc.imageData = NULL; 
    INIT_IMAGE(mySrc, wid, hei, wid);
    myDst.imageData = NULL; 
    INIT_IMAGE(myDst, wid, hei, wid);
    c.imageData = NULL; 
    INIT_IMAGE(c, wid, hei, wid);
    lastc.imageData = NULL; 
    INIT_IMAGE(lastc, wid, hei, wid);
    image_iter1.imageData = NULL; 
    INIT_IMAGE(image_iter1, wid, hei, wid);

    //mySrc, myDst,...
    for (i = 0; i < hei; i++)
    {
        for (j = 0; j < wid; j++)
        {
            *(mySrc.imageData + j * hei + i)  = *(Src.imageData + i * widEff + j);
            *(myDst.imageData + j * hei + i)  = *(Src.imageData + i * widEff + j);
            *(c.imageData + j * hei + i)  = *(Src.imageData + i * widEff + j);
            *(lastc.imageData + j * hei + i)  = *(Src.imageData + i * widEff + j);
            *(image_iter1.imageData + j * hei + i)  = *(Src.imageData + i * widEff + j);
        }
    }
    unsigned char lut1[512] = 
    { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,1
    ,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,
    1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1
    ,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,
    1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1
    ,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,
    1,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1
    ,1,1,1,1,1,1,1,1,1,1,1,1};
    unsigned char lut2[512] = 
    {  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,1,1,0,0,1,1,0,1,1,1,0,0,
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,1,1,0,0,1,1,0,1,1,1,0,0,0,
    0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,
    0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,
    0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,1,1,0,0,1,1,0,1,1,1,0,0,0,0,0,0,
    0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,1,1,0,0,1,1,0,1,1,1};

    int iter = 1;
    bool done = 0;
    bool equalC;
    while (!done)
    {
        memcpy(lastc.imageData, c.imageData, nSize);
        iptMyapplylutc(c, image_iter1, lut1);
        iptMyapplylutc(image_iter1, c, lut2);
        for (i = 0; i < nSize; i++)
        { 
            if ( *(lastc.imageData+i) != *(c.imageData+i) ) 
            {
                equalC = 0; 
                break;
            }
        }
        done = ((iter >= n) | equalC);
        iter++;
    }
    //返回结果
    for (i = 0; i < hei; i++)
    {
        for (j = 0; j < wid; j++)
        {
            *(Dst.imageData + i * widEff + j)  = *(c.imageData + j * hei + i);
        }
    }

    //释放空间
    RLSE_BUFFER(mySrc.imageData);
    RLSE_BUFFER(myDst.imageData);
    RLSE_BUFFER(c.imageData);
    RLSE_BUFFER(lastc.imageData);
    RLSE_BUFFER(image_iter1.imageData);
}
内容概要:本文是一份针对2025年中国企业品牌传播环境撰写的《全网媒体发稿白皮书》,聚焦企业媒体发稿的策略制定、渠道选择与效果评估难题。通过分析当前企业面临的资源分散、内容同质、效果难量化等核心痛点,系统性地介绍了新闻媒体、央媒、地方官媒和自媒体四大渠道的特点与适用场景,并深度融合“传声港”AI驱动的新媒体平台能力,提出“策略+工具+落地”的一体化解决方案。白皮书详细阐述了传声港在资源整合、AI智能匹配、舆情监测、合规审核及全链路效果追踪方面的技术优势,构建了涵盖曝光、互动、转化与品牌影响力的多维评估体系,并通过快消、科技、零售等行业的实战案例验证其有效性。最后,提出了按企业发展阶段和营销节点定制的媒体组合策略,强调本土化传播与政府关系协同的重要性,助力企业实现品牌声量与实际转化的双重增长。; 适合人群:企业市场部负责人、品牌方管理者、公关传播从业者及从事数字营销的相关人员,尤其适用于初创期至成熟期不同发展阶段的企业决策者。; 使用场景及目标:①帮助企业科学制定媒体发稿策略,优化预算分配;②解决渠道对接繁琐、投放不精准、效果不可衡量等问题;③指导企业在重大营销节点(如春节、双11)开展高效传播;④提升品牌权威性、区域渗透力与危机应对能力; 阅读建议:建议结合自身企业所处阶段和发展目标,参考文中提供的“传声港服务组合”与“预算分配建议”进行策略匹配,同时重视AI工具在投放、监测与优化中的实际应用,定期复盘数据以实现持续迭代。
先展示下效果 https://pan.quark.cn/s/987bb7a43dd9 VeighNa - By Traders, For Traders, AI-Powered. Want to read this in english ? Go here VeighNa是一套基于Python的开源量化交易系统开发框架,在开源社区持续不断的贡献下一步步成长为多功能量化交易平台,自发布以来已经积累了众多来自金融机构或相关领域的用户,包括私募基金、证券公司、期货公司等。 在使用VeighNa进行二次开发(策略、模块等)的过程中有任何疑问,请查看VeighNa项目文档,如果无法解决请前往官方社区论坛的【提问求助】板块寻求帮助,也欢迎在【经验分享】板块分享你的使用心得! 想要获取更多关于VeighNa的资讯信息? 请扫描下方二维码添加小助手加入【VeighNa社区交流微信群】: AI-Powered VeighNa发布十周年之际正式推出4.0版本,重磅新增面向AI量化策略的vnpy.alpha模块,为专业量化交易员提供一站式多因子机器学习(ML)策略开发、投研和实盘交易解决方案: :bar_chart: dataset:因子特征工程 * 专为ML算法训练优化设计,支持高效批量特征计算与处理 * 内置丰富的因子特征表达式计算引擎,实现快速一键生成训练数据 * Alpha 158:源于微软Qlib项目的股票市场特征集合,涵盖K线形态、价格趋势、时序波动等多维度量化因子 :bulb: model:预测模型训练 * 提供标准化的ML模型开发模板,大幅简化模型构建与训练流程 * 统一API接口设计,支持无缝切换不同算法进行性能对比测试 * 集成多种主流机器学习算法: * Lass...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值