Towards-Realtime-MOT-Cpp

部署运行你感兴趣的模型镜像

Towards-Realtime-MOT-Cpp

A C++ codebase implementation of Towards-Realtime-MOT.

Github

https://github.com/samylee/Towards-Realtime-MOT-Cpp

Introduction

This repo is the a c++ codebase of the Joint Detection and Embedding (JDE) model. JDE is a fast and high-performance multiple-object tracker that learns the object detection task and appearance embedding task simutaneously in a shared neural network. We hope this repo will help researches/engineers to develop more practical MOT systems.

Requirements

  • Sys-Windows10 (Windows7 should also work)
  • GPU-Nvidia (GTX-1080/RTX-2080/RTX-2080Ti)
  • IDE-VS2017/VS2019
  • cuda == 10.1, cudnn == 7.6
  • LibTorch-1.4.0 [Baidu] (PWD: gr3t)
  • OpenCV == 4.2.0
  • eigen-3.3.9 [Baidu] (PWD: ziiw)

Quick Start

  1. Download JDE weights from [Google] [Baidu].
  2. Convert the pytorch model to a jit model based on Towards-Realtime-MOT, or download [jit_model] (PWD: tupu) directly.
python cvt2jit.py (based on pytorch-1.4.0)
  1. Compile source code by VS2017/2019.
  2. Run JDETracker.

Performance

ModelMOTAIDF1IDSFPFNFPS @Hardware
JDE-576x32063.763.3130766573279433.5 @i7-9700K, RTX-2080ti

Video Demo

 

Reference

 

任何问题请加唯一QQ2258205918(名称samylee)!

唯一VX:samylee_csdn

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值