Manipulating Galois Variables

本文介绍了在MATLAB中操作Galois变量的方法,包括如何确定变量类型、从Galois数组提取信息以及使用特定函数处理Galois数组。通过示例展示了如何检查元素是否属于特定的Galois域,并演示了如何获取Galois数组的原始数据、域阶数及原始多项式。
Communications Toolbox
    

Manipulating Galois Variables

This section describes techniques for manipulating Galois variables or for transferring information between Galois arrays and ordinary MATLAB arrays.

  • Note   These techniques are particularly relevant if you write M-file functions that process Galois arrays. For an example of this type of usage, enter edit gf/conv in the Command Window and examine the first several lines of code in the editor window.

Determining Whether a Variable Is a Galois Array

To find out whether a variable is a Galois array rather than an ordinary MATLAB array, use the isa function. An illustration is below.

  • mlvar = eye(3);
    gfvar = gf(mlvar,3);
    no = isa(mlvar,'gf'); % False because mlvar is not a Galois array
    yes = isa(gfvar,'gf'); % True because gfvar is a Galois array
    

Extracting Information From a Galois Array

To extract the array elements, field order, or primitive polynomial from a variable that is a Galois array, append a suffix to the name of the variable. The table below lists the exact suffixes, which are independent of the name of the variable.


InformationSuffixOutput Value
Array elements.xMATLAB array of type uint16 that contains the data values from the Galois array
Field order.mInteger of type double that indicates that the Galois array is in GF(2^m)
Primitive polynomial.prim_polyInteger of type uint32 that represents the primitive polynomial. The representation is similar to the description in How Integers Correspond to Galois Field Elements.
 
  • Note   If the output value is an integer data type and you want to convert it to double for later manipulation, use the double function.

The code below illustrates the use of these suffixes. The definition of empr uses a vector of binary coefficients of a polynomial to create a Galois array in an extension field. Another part of the example retrieves the primitive polynomial for the field and converts it to a binary vector representation having the appropriate number of bits.

  • % Check that e solves its own minimal polynomial.
    e = gf(5,4); % An element of GF(16)
    emp = minpol(e); % The minimal polynomial, emp, is in GF(2).
    empr = roots(gf(emp.x,e.m)) % Find roots of emp in GF(16).
    % Check that the primitive element gf(2,m) is
    % really a root of the primitive polynomial for the field.
    primpoly_int = double(e.prim_poly);
    mval = e.m;
    primpoly_vect = gf(de2bi(primpoly_int,mval+1,'left-msb'),mval);
    containstwo = roots(primpoly_vect); % Output vector includes 2.
    
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值