Manipulating Galois Variables

本文介绍了在MATLAB中操作Galois变量的方法,包括如何确定变量类型、从Galois数组提取信息以及使用特定函数处理Galois数组。通过示例展示了如何检查元素是否属于特定的Galois域,并演示了如何获取Galois数组的原始数据、域阶数及原始多项式。
Communications Toolbox
    

Manipulating Galois Variables

This section describes techniques for manipulating Galois variables or for transferring information between Galois arrays and ordinary MATLAB arrays.

  • Note   These techniques are particularly relevant if you write M-file functions that process Galois arrays. For an example of this type of usage, enter edit gf/conv in the Command Window and examine the first several lines of code in the editor window.

Determining Whether a Variable Is a Galois Array

To find out whether a variable is a Galois array rather than an ordinary MATLAB array, use the isa function. An illustration is below.

  • mlvar = eye(3);
    gfvar = gf(mlvar,3);
    no = isa(mlvar,'gf'); % False because mlvar is not a Galois array
    yes = isa(gfvar,'gf'); % True because gfvar is a Galois array
    

Extracting Information From a Galois Array

To extract the array elements, field order, or primitive polynomial from a variable that is a Galois array, append a suffix to the name of the variable. The table below lists the exact suffixes, which are independent of the name of the variable.


InformationSuffixOutput Value
Array elements.xMATLAB array of type uint16 that contains the data values from the Galois array
Field order.mInteger of type double that indicates that the Galois array is in GF(2^m)
Primitive polynomial.prim_polyInteger of type uint32 that represents the primitive polynomial. The representation is similar to the description in How Integers Correspond to Galois Field Elements.
 
  • Note   If the output value is an integer data type and you want to convert it to double for later manipulation, use the double function.

The code below illustrates the use of these suffixes. The definition of empr uses a vector of binary coefficients of a polynomial to create a Galois array in an extension field. Another part of the example retrieves the primitive polynomial for the field and converts it to a binary vector representation having the appropriate number of bits.

  • % Check that e solves its own minimal polynomial.
    e = gf(5,4); % An element of GF(16)
    emp = minpol(e); % The minimal polynomial, emp, is in GF(2).
    empr = roots(gf(emp.x,e.m)) % Find roots of emp in GF(16).
    % Check that the primitive element gf(2,m) is
    % really a root of the primitive polynomial for the field.
    primpoly_int = double(e.prim_poly);
    mval = e.m;
    primpoly_vect = gf(de2bi(primpoly_int,mval+1,'left-msb'),mval);
    containstwo = roots(primpoly_vect); % Output vector includes 2.
    
这个是完整源码 python实现 Flask,Vue 【python毕业设计】基于Python的Flask+Vue物业管理系统 源码+论文+sql脚本 完整版 数据库是mysql 本文首先实现了基于Python的Flask+Vue物业管理系统技术的发展随后依照传统的软件开发流程,最先为系统挑选适用的言语和软件开发平台,依据需求分析开展控制模块制做和数据库查询构造设计,随后依据系统整体功能模块的设计,制作系统的功能模块图、E-R图。随后,设计框架,依据设计的框架撰写编码,完成系统的每个功能模块。最终,对基本系统开展了检测,包含软件性能测试、单元测试和性能指标。测试结果表明,该系统能够实现所需的功能,运行状况尚可并无明显缺点。本文首先实现了基于Python的Flask+Vue物业管理系统技术的发展随后依照传统的软件开发流程,最先为系统挑选适用的言语和软件开发平台,依据需求分析开展控制模块制做和数据库查询构造设计,随后依据系统整体功能模块的设计,制作系统的功能模块图、E-R图。随后,设计框架,依据设计的框架撰写编码,完成系统的每个功能模块。最终,对基本系统开展了检测,包含软件性能测试、单元测试和性能指标。测试结果表明,该系统能够实现所需的功能,运行状况尚可并无明显缺点。本文首先实现了基于Python的Flask+Vue物业管理系统技术的发展随后依照传统的软件开发流程,最先为系统挑选适用的言语和软件开发平台,依据需求分析开展控制模块制做和数据库查询构造设计,随后依据系统整体功能模块的设计,制作系统的功能模块图、E-R图。随后,设计框架,依据设计的框架撰写编码,完成系统的每个功能模块。最终,对基本系统开展了检测,包含软件性能测试、单元测试和性能指标。测试结果表明,该系统能够实现所需的功能,运行状况尚可并无明显缺点。本文首先实现了基于Python的Flask+Vue物业管理系统技术的发
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值