DVB Device nodes and character devices

本文介绍了DVB和V4L设备的管理工作,包括设备加载时udev如何自动创建设备节点,以及如何通过查看/dev目录下的不同子目录来确认设备是否正确加载。此外,还详细说明了DVB和V4L设备中的字符设备及其功能。

When a driver module loads, the device manager udev will "automagically" create device nodes on the /dev hierarchy. 

Note: If you are unfamiliar with what a DVB or V4L device is, please see  here


For a DVB device

A properly loaded device module should result in a non-empty /dev/dvb directory. You can check on whether this is true with the following command:

ls -l /dev/dvb/

(alternatively, you can browse your directory structure with the graphical file manager of your choice). More specifically, the output of the above command should reveal that /dev/dvb/ is populated by "adapterN" (whereby, in terms of enumerating the devices installed in the system, N=0 to whatever 1). For example, if you have but a single DVB device installed in your system, then expect to find /dev/dvb/adapter0.

DVB character devices

The Linux DVB API provides for six unix style character devices which allow control of the hardware components found on a particular DVB device adapter.It is under each adapterN directory that you will find these character devices. The command

ls -l /dev/dvb/adapter0

reveals the character devices associated with adapter0 for which the drivers have control. If you have more then one DVB device, you can see the same for all with

ls -l /dev/dvb/adapter*

Similar to the way in which the device adapters are enumerated, the character devices follow the form of M=0 to whatever 1. For example:/dev/dvb/adapter0/frontend0 .... if the same device had a second frontend, that character device would be enumerated by /dev/dvb/adapter0/frontend1 ... if you had another dvb adapter in the system, then you would see /dev/dvb/adapter1/frontend0 and so forth.

In brief, these character devices are:

  • frontend
    • The frontend character device controls the tuner and demodulator hardware ... (Note: there are different types of these hardware components for the different DTV standards)
  • demux
    • The demux character device controls the filters for processing the transport stream (TS). In essence, the demultiplexer splits the TS into its component parts (which usually entail being several audio and video streams, as well as some data streams)
      • dvr
        • The dvr is a logical device that is associated with the demux character device ... it delivers up a TS that was multiplexed from the sub-streams specified and filtered, from the original TS, by the demux for either:
(1) immediate playback --- in which case it has to be decoded either:
a) on the device itself ... [now days its quite rare for PC devices to have hardware decoding ( see discussion), but this is certainly not the case for  STBs)
or
b) downstream by the system [the usual route for PC devices -- i.e. software decoding via the host CPU, and possibly assisted by the GPU ... (see here for more discussion) ]
or
(2) saving to disk for later playback.
In essence, the  demux decomposes the original TS and selects/filters particular underlining sub-streams and the dvr then repackages those selections within a TS. Typically the multiplexed TS provided by the  dvr would be composed of an individual program stream
  • net
    • The net character device controls the ability to provide IP-over-DVB (e.g. satellite based broadband internet service ... Note: although it is not mentioned in the API documentation, this functionality is not restricted to satellite (DVB-S) alone -- any DVB capable device can support it, provided you use the dvb net module (i.e. it is possible over DVB-C and DVB-T as well). The dvbnet script in the dvb-apps handles this. As an example, both Scientific Atlantic and Cisco have DVB STB devices which can provide such broadband services.)
  • video
    • The video character device controls the MPEG2 video decoder of the DVB hardware (if present ... found on so called "full-featured devices") .... Note: do NOT confuse this with the video character device created by V4L devices (see the discussion below), as they are entirely different things. Specifically, the DVB video character device only controls decoding of the MPEG video stream, not its presentation on the computer or TV screen. This later function, on a full-featured device, is typically handled by an associated video4linux device IC, which allows scaling and defining output windows. Control of this later device is established through a V4L character device, specifically, /dev/video.
  • osd
    • The osd character device is not documented in the API, but it stems from the legacy OSD API for so called "full-featured devices". The draft version of the never finished v4 Linux DVB API makes passing mention of this character device: "The Linux DVB API Version 3 was focussed on the popular Siemens PCI DVB card. Due to the pragmatic evolution of the API, there are namespace inconsitencies and inconsitent remains of things that really don’t belong into the API, like ad-hoc DVD subtitle support or a very limited OSD API design." Nonetheless, when dealing with a full-featured card, it will indeed show up under the adapter node, as illustrated by this end user supplied example.
  • audio
    • The audio character device controls the MPEG2 audio decoder of the DVB hardware (if present ... found on so called full-featured devices")
  • ca
    • The ca character device controls conditional access hardware (i.e. the CICAM)

Not all of the character devices defined by the DVB API need be present for a device, specifically because some functionality is not needed; in point:

  • Most DVB devices don’t have their own MPEG decoder because:
    • modern CPUs and the ability to offload decoding to video card GPUs has pretty much long replaced the need of the so called "full feautred" class of DVB devices, or
    • may be foregone for datacasting type devices (e.g. for data-only uses like “internet over satellite”)
In any regard, for either reason, this results in the omission of the  audio and  video character devices
  • Not every device or STB provides conditional access hardware ... i.e. leads to the omission of the ca character device
  • The DVB API may also be used for MPEG decoder-only PCI cards, in which case, for these rare devices, there exists no need for the frontend character device

In fact, a typical DVB device these days will usually only contain three of these character devices (frontenddemuxnet), as well as the special logical device (dvr).

For a V4L device

Similarly, with "V4L devices", a properly loaded device module should result in a non-empty /dev/v4l directory. You can check on whether this is true with the following command:

ls -l /dev/v4l

What you should find in that device node is a sub directory, named "by-path", that contains symbolic links to character device files, whose conventional names and functions are summarized in the table below.

Note: You can determine which device maps to  videoN by matching, for example (in the case of a pci card), the domain:bus:slot.func information provided by the command lspci to the associated links in the by-path directory .... Somewhat similarly, QUERYCAP ioctl() or sysfs can be used to expose which V4L driver maps to videoN  [1]

V4L character devices

The V4L2 API defines three special character devices. In the table below, and ensuing discussion, we make note of a fourth, the Teletext Interface, which was defined by the older V4L1 API, but is not, nor intended to be, defined in the newer V4L2 API. This fourth character device does, however, receive de facto support given that "for compatibility reasons the character device file names recommended for V4L2 video capture, overlay, radio, teletext and raw vbi capture devices did not change from those used by V4L" and can be serviced "through the V4L2 compatibility layer in the videodev kernel module". 2

Character Device Files Defined by the V4L2 API
Device File Minor Range Function
/dev/video 3/dev/video0 to /dev/video630-63
  • Video Capture Interface
  • Video Overlay Interface
  • Video Output Interface
  • Video Output Overlay Interface
/dev/radio 3/dev/radio0 to /dev/radio6364-127
  • Radio Interface AM/FM Radio Devices
  • RDS Interface
/dev/vtx 2, 4/dev/vtx0 to /dev/vtx31192-223
  • Teletext Interface
/dev/vbi 3/dev/vbi0 to /dev/vbi31224-239
  • Raw VBI Data Interface
  • Sliced VBI Data Interface

The most prominently recognized are the /dev/videoN character devices (whereby, in terms of enumerating the devices installed in the system, N=0 to whatever 1). You can check for them within your system with the following command:

ls -l /dev/video*

A more detailed explanation of the V4L character devices are outlined in point form below:

  • /dev/video
    • Video Capture Interface
      • Video capture devices sample an analog video signal and store the digitized images in memory.
      • /dev/video and /dev/video0 to /dev/video63 with major number 81 and minor numbers 0 to 63.
      • Note: /dev/video is typically a symbolic link to the preferred video device (/dev/video03
      • Note the same device files are used for video output devices
    • Video Overlay Interface (also known as Framebuffer Overlay or Previewing)
      • accessed through the same character special files as video capture devices.
      • Note the default function of a /dev/video device is video capturing. The overlay function is only available after calling the VIDIOC_S_FMT ioctl.
    • Video Output Interface
      • Video output devices encode stills or image sequences as analog video signal. With this interface applications can control the encoding process and move images from user space to the driver.
    • Video Output Overlay Interface
      • Some video output devices can overlay a framebuffer image onto the outgoing video signal. Applications can set up such an overlay using this interface, which borrows structures and ioctls of the Video Overlay interface.
      • The OSD function is accessible through the same character special file as the Video Output function. Note the default function of such a /dev/videodevice is video capturing or output. The OSD function is only available after calling the VIDIOC_S_FMT ioctl.
        • Framebuffer
          • Contrary to the Video Overlay interface the framebuffer is normally implemented on the TV card and not the graphics card. On Linux it is accessible as a framebuffer device (/dev/fbN). Given a V4L2 device, applications can find the corresponding framebuffer device by calling the VIDIOC_G_FBUF ioctl.
  • /dev/radio
    • Radio Interface
      • accessed through character device special files named /dev/radio and /dev/radio0 to /dev/radio63 with major number 81 and minor numbers 64 to 127. Note that /dev/radio is a symbolic link to /dev/radio0 3
    • RDS Interface
  • /dev/vtx
    • Teletext Interface Chips
      • devices receiving and demodulating Teletext data [ETS 300 706, ITU BT.653],
      • the Teletext API was integrated into the original V4L API. There are no plans to replace the Teletext API or to integrate it into V4L2. 2
      • the Telextext Interface is accessed by character device file names /dev/vtx0 to /dev/vtx31, device major number 81, minor numbers 192 to 223. 4
  • /dev/vbi
    • Raw VBI Data Interface
      • VBI devices are accessed through character device special files named /dev/vbi and /dev/vbi0 to /dev/vbi31 with major number 81 and minor numbers 224 to 255.
      • /dev/vbi is typically a symbolic link to the preferred VBI device. 3
      • This convention applies to both input and output devices.
      • VBI capturing and output is also available as device function under /dev/video. To capture or output raw VBI data with these devices applications must call the VIDIOC_S_FMT ioctl. Accessed as /dev/vbi, raw VBI capturing or output is the default device function.
    • Sliced VBI Data Interface
      • Sliced VBI devices use hardware to demodulate data transmitted in the VBI. V4L2 drivers shall not do this by software, see also the raw VBI interface.
      • Sliced VBI capture and output devices are accessed through the same character special files as raw VBI devices.
      • When a driver supports both VBI interfaces, the default function of a /dev/vbi device is raw VBI capturing or output, and the sliced VBI function is only available after calling the VIDIOC_S_FMT ioctl
      • Likewise a /dev/video device may support the sliced VBI API, however the default function here is video capturing or output.

Not all of the character devices defined by the V4L2 API need be present for a device, specifically because some functionality is not needed or present on the device. For example, unless the device contains a decoder IC for AM/FM radio reception, the /dev/radio character device need not be created by the driver.

Associated Nodes and Character Devices for Analog Audio Input/Output

  • /dev/mixer
  • /dev/dsp


Endnotes

  • Note 1: The real life limitation of the "whatever" comment is given by the max. adapter definition in the respective device driver (Note: this is usually set at 8, though, this can be adjusted for more by altering the source code and recompiling. Also note that a patch was submitted in Sept/09, which will allow configuration of the max adapter definition)
  • Note 2: See the V4L2 API for details regarding the Teletext Interface
  • Note 2: The V4L2 API clearly denotes, in the case of the three defined character devices, that the respective base is a symbolic link to the respective N=0 character device (i.e. /dev/video --> /dev/video0). For the video and radio character devices, this is also cited within the {Linux}/Documentation/devices.txt file
  • Note 4: While no mention of it is made in the V4l2 API, presumably the base /dev/vtx character device is a symbolic link to /dev/vtx0; as this would be similar in case with the three defined character devices.

Also See

  • For more comprehensive information, it is suggested that you review the DVB and V4L APIs
  • For more comprehensive information on the associated audio nodes, it is suggested that you review ALSA and/or OSS related materials

External Links

【电力系统】单机无穷大电力系统短路故障暂态稳定Simulink仿真(带说明文档)内容概要:本文档围绕“单机无穷大电力系统短路故障暂态稳定Simulink仿真”展开,提供了完整的仿真模型与说明文档,重点研究电力系统在发生短路故障后的暂态稳定性问题。通过Simulink搭建单机无穷大系统模型,模拟不同类型的短路故障(如三相短路),分析系统在故障期间及切除后的动态响应,包括发电机转子角度、转速、电压和功率等关键参数的变化,进而评估系统的暂态稳定能力。该仿真有助于理解电力系统稳定性机理,掌握暂态过程分析方法。; 适合人群:电气工程及相关专业的本科生、研究生,以及从事电力系统分析、运行与控制工作的科研人员和工程师。; 使用场景及目标:①学习电力系统暂态稳定的基本概念与分析方法;②掌握利用Simulink进行电力系统建模与仿真的技能;③研究短路故障对系统稳定性的影响及提高稳定性的措施(如故障清除时间优化);④辅助课程设计、毕业设计或科研项目中的系统仿真验证。; 阅读建议:建议结合电力系统稳定性理论知识进行学习,先理解仿真模型各模块的功能与参数设置,再运行仿真并仔细分析输出结果,尝试改变故障类型或系统参数以观察其对稳定性的影响,从而深化对暂态稳定问题的理解。
本研究聚焦于运用MATLAB平台,将支持向量机(SVM)应用于数据预测任务,并引入粒子群优化(PSO)算法对模型的关键参数进行自动调优。该研究属于机器学习领域的典型实践,其核心在于利用SVM构建分类模型,同时借助PSO的全局搜索能力,高效确定SVM的最优超参数配置,从而显著增强模型的整体预测效能。 支持向量机作为一种经典的监督学习方法,其基本原理是通过在高维特征空间中构造一个具有最大间隔的决策边界,以实现对样本数据的分类或回归分析。该算法擅长处理小规模样本集、非线性关系以及高维度特征识别问题,其有效性源于通过核函数将原始数据映射至更高维的空间,使得原本复杂的分类问题变得线性可分。 粒子群优化算法是一种模拟鸟群社会行为的群体智能优化技术。在该算法框架下,每个潜在解被视作一个“粒子”,粒子群在解空间中协同搜索,通过不断迭代更新自身速度与位置,并参考个体历史最优解和群体全局最优解的信息,逐步逼近问题的最优解。在本应用中,PSO被专门用于搜寻SVM中影响模型性能的两个关键参数——正则化参数C与核函数参数γ的最优组合。 项目所提供的实现代码涵盖了从数据加载、预处理(如标准化处理)、基础SVM模型构建到PSO优化流程的完整步骤。优化过程会针对不同的核函数(例如线性核、多项式核及径向基函数核等)进行参数寻优,并系统评估优化前后模型性能的差异。性能对比通常基于准确率、精确率、召回率及F1分数等多项分类指标展开,从而定量验证PSO算法在提升SVM模型分类能力方面的实际效果。 本研究通过一个具体的MATLAB实现案例,旨在演示如何将全局优化算法与机器学习模型相结合,以解决模型参数选择这一关键问题。通过此实践,研究者不仅能够深入理解SVM的工作原理,还能掌握利用智能优化技术提升模型泛化性能的有效方法,这对于机器学习在实际问题中的应用具有重要的参考价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
### Jinja2 模板中 `if` 判断变量存在的正确方式 在 Jinja2 模板引擎中,当尝试通过 `if` 语句判断两个变量是否存在时,如果这些变量未定义,则可能会引发错误。这是因为 Jinja2 默认情况下不会区分未定义的变量和布尔值为假的情况。 为了避免这种问题,在模板中可以使用 `{% if nodes is defined and edges is defined %}` 的形式来显式检查变量是否已定义[^1]。以下是具体的解决方案: #### 解决方案代码示例 ```html+jinja {% if nodes is defined and edges is defined %} {% if nodes and edges %} <!-- 当 nodes 和 edges 都存在且非空 --> <p>Nodes: {{ nodes }}</p> <p>Edges: {{ edges }}</p> {% else %} <p>Either nodes or edges are empty.</p> {% endif %} {% else %} <p>Variables 'nodes' or 'edges' are not defined.</p> {% endif %} ``` 在此代码片段中: - 使用了 `is defined` 来检测变量是否被传递到模板中。 - 如果变量已被定义,则进一步检查其是否有值(即非空列表或其他有效数据结构)。 #### 错误原因分析 Jinja2 中未定义的变量会被视为特殊对象 `_Undefined` 类型。如果不先验证它们的存在状态就直接参与逻辑运算,可能导致运行时异常。例如,假设 `nodes` 或 `edges` 并未传入模板上下文中,那么执行如下代码将会报错: ```html+jinja {% if nodes and edges %} ... {% endif %} ``` 因为此时 `nodes` 或者 `edges` 是未定义的状态,而不是简单的布尔值 False 或 None[^1]。 --- ### 提供一个完整的 Flask 渲染示例 为了更直观展示如何处理这种情况,下面是一个基于 Flask 的完整例子,演示如何安全地将变量传递至模板并进行条件判断。 #### 后端代码 (Python) ```python from flask import Flask, render_template app = Flask(__name__) @app.route('/') def index(): # 这里模拟可能不存在的节点和边 context = { "nodes": ["node1", "node2"], # 可能为空或者完全省略 "edges": [("node1", "node2")] # 同样可能是空或缺失 } return render_template('index.html', **context) if __name__ == '__main__': app.run(debug=True) ``` #### 前端模板 (`index.html`) ```html+jinja <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Jinja2 If Example</title> </head> <body> {% if nodes is defined and edges is defined %} {% if nodes and edges %} <h1>Data Present:</h1> <ul> <li><strong>Nodes:</strong> {{ nodes | join(", ") }}</li> <li><strong>Edges:</strong> <ul> {% for edge in edges %} <li>{{ edge[0] }} -> {{ edge[1] }}</li> {% endfor %} </ul> </li> </ul> {% else %} <p>No data available in either nodes or edges.</p> {% endif %} {% else %} <p>One of the required variables ('nodes' or 'edges') was not passed to the template.</p> {% endif %} </body> </html> ``` 此示例展示了如何优雅地处理潜在的未定义变量情况,并提供清晰的信息反馈给前端用户。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值