2010年03月01日 星期一 13时30分44秒
捣鼓了好几天,终于做出了一个负载均衡模块的雏形:simpLB。具体功能就是把发送到LoadBalaner上数据包“无条件”调度到Server_1上。
目前经测试,可以支持ICMP(ping)、UDP,但是如果是TCP包,当前只支持80端口的应用(Http)。
下面要作的是
把所用到ip_vs.h中的两个函数自定义一下,以“解耦合”;
支持TCP协议的全部端口;
进一步完善对UDP协议的支持;
进行连接跟踪;
并加入一个简单的调度算法,使其不再“无条件”;
再逐步完善调度算法... ...
贴上代码。
1、simpLB.c
#include <linux/kernel.h>
#include <linux/tcp.h> /* for tcphdr */
#include <net/ip.h>
#include <net/tcp.h> /* for csum_tcpudp_magic */
#include <net/udp.h>
#include <net/icmp.h> /* for icmp_send */
#include <net/route.h> /* for ip_route_output */
#include <net/ipv6.h>
#include <net/ip6_route.h>
#include <linux/icmpv6.h>
#include <linux/netfilter.h>
#include <linux/netfilter_ipv4.h>
#include <net/ip_vs.h> /*for ip_vs_check_diff ip_vs_check_diff4*/
#include "tools.h"
MODULE_LICENSE("GPL");
/* This is the structure we shall use to register our function */
/* IP address we want to Nat*/
static unsigned char *vmLB_ip = "/xc0/xa8/x7a/x01"; /* 192.168.122.1*/
static unsigned char *vm01_ip = "/xc0/xa8/x63/x65"; /* 192.168.99.101 */
//static unsigned char *vm02_ip = "/xc0/xa8/x63/x66"; /* 192.168.99.102 */
/* This is the hook function itself */
unsigned int sahu_pre_routing(unsigned int hooknum,
struct sk_buff *skb,
const struct net_device *in,
const struct net_device *out,
int (*okfn)(struct sk_buff *))
{
char daddr_str[16];
struct sk_buff *sb = skb;
struct iphdr *iph;
struct tcphdr *tcph;
unsigned int tcphoff;
int oldlen;
if(!sb) return NF_ACCEPT;
iph = ip_hdr(sb);
if(!iph) return NF_ACCEPT;
if (iph->daddr == *(unsigned int *)vmLB_ip){
if(iph->protocol == IPPROTO_TCP){
tcphoff = ip_hdrlen(skb);
oldlen = skb->len - tcphoff;
tcph = (void *)skb_network_header(skb) + tcphoff;
// tcph->dest = 80;
tcph->check=
csum_fold(ip_vs_check_diff4(*(unsigned int *)vmLB_ip, *(unsigned int *)vm01_ip,
ip_vs_check_diff2(80, 80,
~csum_unfold(tcph->check))));
if(skb->ip_summed==CHECKSUM_COMPLETE)
skb->ip_summed=CHECKSUM_NONE;
}
iph->daddr= *(unsigned int *)vm01_ip;
ip_send_check(iph);
// skb->local_df = 1;
printk("DNat: %d.%d.%d.%d To:%d.%d.%d.%d/n",
*vmLB_ip, *(vmLB_ip + 1), *(vmLB_ip + 2),*(vmLB_ip + 3),
*vm01_ip, *(vm01_ip + 1), *(vm01_ip + 2),*(vm01_ip + 3));
return NF_ACCEPT;
}else{
inet_i2str(iph->daddr,daddr_str);
printk("No DNat for %s/n",daddr_str);
return NF_ACCEPT;
}
}
unsigned int sahu_post_routing(unsigned int hooknum,
struct sk_buff *skb,
const struct net_device *in,
const struct net_device *out,
int (*okfn)(struct sk_buff *))
{
char saddr_str[16];
struct sk_buff *sb = skb;
struct iphdr *iph;
struct tcphdr *tcph;
unsigned int tcphoff;
int oldlen;
if(!sb) return NF_ACCEPT;
iph = ip_hdr(sb);
if(!iph) return NF_ACCEPT;
if (iph->saddr == *(unsigned int *)vm01_ip){
if(iph->protocol == IPPROTO_TCP){
tcphoff = ip_hdrlen(skb);
oldlen = skb->len - tcphoff;
tcph = (void *)skb_network_header(skb) + tcphoff;
// tcph->source = 80;
tcph->check=
csum_fold(ip_vs_check_diff4(*(unsigned int *)vm01_ip, *(unsigned int *)vmLB_ip,
ip_vs_check_diff2(80, 80,
~csum_unfold(tcph->check))));
if(skb->ip_summed==CHECKSUM_COMPLETE)
skb->ip_summed=CHECKSUM_NONE;
}
iph->saddr= *(unsigned int *)vmLB_ip;
ip_send_check(iph);
// skb->local_df = 1;
printk("SNat: %d.%d.%d.%d To:%d.%d.%d.%d/n",
*vm01_ip, *(vm01_ip + 1), *(vm01_ip + 2),*(vm01_ip + 3),
*vmLB_ip, *(vmLB_ip + 1), *(vmLB_ip + 2),*(vmLB_ip + 3));
return NF_ACCEPT;
}else{
inet_i2str(iph->saddr,saddr_str);
printk("No SNat for %s/n",saddr_str);
return NF_ACCEPT;
}
}
/* netfilter hooks in this kernel module*/
static struct nf_hook_ops sahu_ops[] __read_mostly = {
{
.hook = sahu_pre_routing,
.owner = THIS_MODULE,
.pf = PF_INET,
.hooknum = NF_INET_PRE_ROUTING,
.priority = 100,
},
{
.hook = sahu_post_routing,
.owner = THIS_MODULE,
.pf = PF_INET,
.hooknum = NF_INET_POST_ROUTING,
.priority = 100,
}
};
/* Initialisation routine */
int init_module()
{
int ret;
ret = nf_register_hooks(sahu_ops,ARRAY_SIZE(sahu_ops));
if(ret<0){
pr_info("can't install simpLB into kernel!/n");
}else{
pr_info("simpLB install into kernel!/n");
}
return 0;
}
/* Cleanup routine */
void cleanup_module()
{
nf_unregister_hooks(sahu_ops,ARRAY_SIZE(sahu_ops));
pr_info("simpLB removed from kernel!/n");
}
2、tools.h
//extern static char * inet_i2str(__be32 addr);
int inet_i2str(unsigned int addr,char *addr_str){
unsigned char *p;
int i;
p=(unsigned char *)(&addr);
for(i=0;i<4;i++){
addr_str[i*4+0]=*(p+i)/100+'0';
addr_str[i*4+1]=*(p+i)/10-(*(p+i)/100)*10+'0';
addr_str[i*4+2]=*(p+i)%10+'0';
addr_str[i*4+3]='.';
}
addr_str[15]='/0';
return 0;
}
3、Makefile
obj-m +=simpLB.o
all:
make -C /lib/modules/`uname -r`/build M=`pwd`
clean:
make -C /lib/modules/`uname -r`/build M=`pwd` clean
install:
/sbin/insmod simpLB.ko
remove:
/sbin/rmmod simpLB
4、测试
4.1、测试环境
网络拓扑:
Clinet(192.168.122.101)<---->LoadBalancer(192.168.122.1--192.168.99.1)<---->Server_1(192.168.99.101)
LoadBalancer是192.168.122.0和192.168.99.0两个网络的网关。运行:
echo 1 > /proc/sys/net/ipv4/ip_forward
打开网关的转发功能。
4.2、于LoadBalancer上:
编译(make)、安装(make install)simpLB内核模块,以启动简单的负载均衡。
运行:service apache2 start,以启动web服务器。
运行:vim /srv/www/htdocs/index.html,编辑主页内容为“It works!@vmLB”。
4.3、于Server_1上:
编译(make)、安装(make install)netMonitor内核模块,以监视Server_1上的各个hook点上的网络数据包。
运行:service apache2 start,以启动web服务器。
运行:vim /srv/www/htdocs/index.html,编辑主页内容为“It works!@vm01”。
4.4、于Client上:
运行:lyxn -dump 192.168.122.1
得到结果为:“It works!@vm01”而不是“It works!@vmLB”。
如果关心细节可以于LoadBalancer和Server_1上运行:dmesg | tail,查看。或是用WireShark进行查看。