【题目描述】
Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n.
Example:
Given n = 2, return 91. (The answer should be the total numbers in the range of 0 ≤ x < 100, excluding[11,22,33,44,55,66,77,88,99])
Hint:
- A direct way is to use the backtracking approach.
- Backtracking should contains three states which are (the current number, number of steps to get that number and a bitmask which represent which number is marked as visited so far in the current number). Start with state (0,0,0) and count all valid number till we reach number of steps equals to 10n.
- This problem can also be solved using a dynamic programming approach and some knowledge of combinatorics.
- Let f(k) = count of numbers with unique digits with length equals k.
- f(1) = 10, ..., f(k) = 9 * 9 * 8 * ... (9 - k + 2) [The first factor is 9 because a number cannot start with 0].
【解题思路】
动态规划的题目。
要注意的地方是如果数字长度为0,f(0)=1而不是为0,还有f(1)=10
当k大于等于2时,f(k) = 9 * 9 * 8 * ... (9 - k + 2)
【代码】
class Solution {
public:
int countNumbersWithUniqueDigits(int n) {
int* f=new int[n+1];
f[0]=0;
f[1]=10;
f[2]=81;
if(n==0) return 1;
if(n==1) return 10;
if(n==2) return f[1]+f[2];
int ans=f[1]+f[2];
for(int i=3;i<=n;i++){
f[i]=f[i-1]*(9-i+2);
ans+=f[i];
}
delete []f;
return ans;
}
};
2206

被折叠的 条评论
为什么被折叠?



