Weak Pair
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 436 Accepted Submission(s): 154
Total Submission(s): 436 Accepted Submission(s): 154
Problem Description
You are given a
rooted
tree of
N
nodes, labeled from 1 to
N
. To the
i
th node a non-negative value
ai
is assigned.An
ordered
pair of nodes
(u,v)
is said to be
weak
if
(1) u is an ancestor of v (Note: In this problem a node u is not considered an ancestor of itself);
(2) au×av≤k .
Can you find the number of weak pairs in the tree?
(1) u is an ancestor of v (Note: In this problem a node u is not considered an ancestor of itself);
(2) au×av≤k .
Can you find the number of weak pairs in the tree?
Input
There are multiple cases in the data set.
The first line of input contains an integer T denoting number of test cases.
For each case, the first line contains two space-separated integers, N and k , respectively.
The second line contains N space-separated integers, denoting a1 to aN .
Each of the subsequent lines contains two space-separated integers defining an edge connecting nodes u and v , where node u is the parent of node v .
Constrains:
1≤N≤105
0≤ai≤109
0≤k≤1018
The first line of input contains an integer T denoting number of test cases.
For each case, the first line contains two space-separated integers, N and k , respectively.
The second line contains N space-separated integers, denoting a1 to aN .
Each of the subsequent lines contains two space-separated integers defining an edge connecting nodes u and v , where node u is the parent of node v .
Constrains:
1≤N≤105
0≤ai≤109
0≤k≤1018
Output
For each test case, print a single integer on a single line denoting the number of weak pairs in the tree.
Sample Input
1 2 3 1 2 1 2
Sample Output
1
Source
2016 ACM/ICPC Asia Regional Dalian Online
题意: 给出一棵nnn
个结点的树和一个数kkk
, 每个节点上有权值aia_iai
, 问有多少个有序对(u,v)(u,v)(u,v)
满足uuu
是vvv
的祖先, 且au×av≤ka_u \times a_v \le kau×av≤k
.
题解:
对于单个节点而言,可以讨论以这个节点为v,有多少祖先和其相乘满足条件,即算单点对答案的贡献度。
这题很容易就能转化成:
对单个节点而言,统计比当前节点大的祖先k/ai;
由此,可以用树状数组维护从根节点开始的k/ai值。
每遍历到一个节点,求出树状数组里比当前ai大的数的个数。
再将其的k/ai值植入树状数组。
还有一点遍历过的节点要及时删除。
代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+100;
typedef long long ll;
vector<int>v[maxn];
map<long long,int>p;
int vis[maxn*2];
ll num[maxn*2],ans,c[maxn*2],data[maxn*2];
int n,len;
ll k;
void prepare(long long *x) {
for(int i=1;i<=2*n;i++) data[i]=x[i];
sort(data+1,data+2*n+1);
int m=unique(data+1,data+2*n+1)-data-1;
for(int i=1;i<=2*n;i++) x[i]=lower_bound(data+1,data+m+1,x[i])-data;
}
int lowbit(int x)//计算lowbit
{
return x&(-x);
}
void add(int i,int val)//将第i个元素更改为val
{
while(i<=2*n)
{
c[i]+=val;
i+=lowbit(i);
}
}
int sum(int i)//求前i项和
{
int s=0;
while(i>0)
{
s+=c[i];
i-=lowbit(i);
}
return s;
}
void dfs(int s,int mm)
{
int m=v[s].size();
int cc=sum(num[s]-1);
ans+=mm-cc;
mm++;
add(num[s+n],1);
for(int i=0;i<m;i++)
{
int u=v[s][i];
dfs(u,mm);
}
add(num[s+n],-1);
mm--;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
ans=0;
memset(vis,0,sizeof(vis));
memset(c,0,sizeof(c));
for(int i=0;i<=n;i++)
v[i].clear();
scanf("%d%I64d",&n,&k);
int a,b;
for(int i=1;i<=n;i++)
{
scanf("%I64d",&num[i]);
num[i+n]=k/num[i];
}
prepare(num);
for(int i=0;i<n-1;i++)
{
scanf("%d%d",&a,&b);
v[a].push_back(b);
vis[b]++;
}
int s;
for(int i=1;i<=n;i++)
if(vis[i]==0)
{
s=i;
break;
}
dfs(s,0);
printf("%I64d\n",ans);
}
return 0;
}
从根开始dfs, .