hadoop-2.6.1 winutil处理

本文档通过一个具体的例子展示了Hadoop MapReduce实现WordCount的过程。从原始数据开始,经过Map阶段,对每一行数据进行拆分并统计单词出现次数,然后在Reduce阶段将相同单词的计数进行求和。最后,输出每个单词及其总数。

原始数据
HDFS

words

hello    tom
hello    jerry
hello    kitty
hello    world
hello    tom
Map阶段
1.每次读一行数据,

2.拆分每行数据,

3.每个单词碰到一次写个1

<0, "hello tom">

<10, "hello jerry">

<22, "hello kitty">

<34, "hello world">

<46, "hello tom">

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/**
 * LongWritable 偏移量 long,表示该行在文件中的位置,而不是行号
 * Text map阶段的输入数据 一行文本信息 字符串类型 String
 * Text map阶段的数据字符串类型 String
 * IntWritable map阶段输出的value类型,对应java中的int型,表示行号
 */
public class WordCountMap extends Mapper<LongWritable, Text, Text, IntWritable>{
    @Override
 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值