leetcode452. Minimum Number of Arrows to Burst Balloons

本文介绍了一种算法问题——如何用最少数量的箭来爆破所有气球。气球分布在二维空间中,输入为每个气球的水平直径起点和终点坐标。通过两种方法实现:一种是对终点进行排序,另一种是对起点进行排序。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

452. Minimum Number of Arrows to Burst Balloons

There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided input is the start and end coordinates of the horizontal diameter. Since it’s horizontal, y-coordinates don’t matter and hence the x-coordinates of start and end of the diameter suffice. Start is always smaller than end. There will be at most 104 balloons.

An arrow can be shot up exactly vertically from different points along the x-axis. A balloon with xstart and xend bursts by an arrow shot at x if xstart ≤ x ≤ xend. There is no limit to the number of arrows that can be shot. An arrow once shot keeps travelling up infinitely. The problem is to find the minimum number of arrows that must be shot to burst all balloons.

Example:

Input:
[[10,16], [2,8], [1,6], [7,12]]

Output:
2

Explanation:
One way is to shoot one arrow for example at x = 6 (bursting the balloons [2,8] and [1,6]) and another arrow at x = 11 (bursting the other two balloons).

解法一

按照end进行升序排序,判断下一个start是否大于该end,如果大于,ans加一。

public class Solution {
    public int findMinArrowShots(int[][] points) {
        if (points == null || points.length == 0) {
            return 0;
        }
        if (points[0] == null || points[0].length == 0) {
            return 0;
        }

        Arrays.sort(points, new Comparator<int[]>() {
            @Override
            public int compare(int[] o1, int[] o2) {
                return o1[1] - o2[1];
            }
        });
        int terminal = points[0][1];
        int ans = 1;
        for (int i = 1; i < points.length; i++) {
            if (points[i][0] > terminal) {
                ans++;
                terminal = points[i][1];
            }
        }
        return ans;
    }
}

这里写图片描述

解法二

按照start升序排序,判断下一个区间的start是否大于该区间的terminal,如果大于,terminal加大,ans加1;如果不大于,是否下一个区间的terminal是否小于该区间的terminal,即是否嵌套,如果小于,terminal变小,变为下一个区间的terminal。

public class Solution {
    public int findMinArrowShots(int[][] points) {
        if (points == null || points.length == 0) {
            return 0;
        }
        if (points[0] == null || points[0].length == 0) {
            return 0;
        }

        Arrays.sort(points, new Comparator<int[]>() {
            @Override
            public int compare(int[] o1, int[] o2) {
                return o1[0] - o2[0];
            }
        });
        int terminal = points[0][1];
        int ans = 1;
        for (int i = 1; i < points.length; i++) {
            if (points[i][0] > terminal) {
                ans++;
                terminal = points[i][1];
            } else if (points[i][1] < terminal) {
                terminal = points[i][1];
            }
        }
        return ans;
    }
}

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值