c++单例模式

本文深入探讨了单例模式的设计理念及其实现方式,包括如何确保类只有一个实例,并提供了全局访问点。文中详细介绍了多种实现方法及其优缺点,帮助读者更好地理解和运用单例模式。

原文地址:http://blog.youkuaiyun.com/hackbuteer1/article/details/7460019

单例模式也称为单件模式、单子模式,可能是使用最广泛的设计模式。其意图是保证一个类仅有一个实例,并提供一个访问它的全局访问点,该实例被所有程序模块共享。有很多地方需要这样的功能模块,如系统的日志输出,GUI应用必须是单鼠标,MODEM的联接需要一条且只需要一条电话线,操作系统只能有一个窗口管理器,一台PC连一个键盘。
       单例模式有许多种实现方法,在C++中,甚至可以直接用一个全局变量做到这一点,但这样的代码显的很不优雅。 使用全局对象能够保证方便地访问实例,但是不能保证只声明一个对象——也就是说除了一个全局实例外,仍然能创建相同类的本地实例。
《设计模式》一书中给出了一种很不错的实现,定义一个单例类,使用类的私有静态指针变量指向类的唯一实例,并用一个公有的静态方法获取该实例。
       单例模式通过类本身来管理其唯一实例,这种特性提供了解决问题的方法。唯一的实例是类的一个普通对象,但设计这个类时,让它只能创建一个实例并提供对此实例的全局访问。唯一实例类Singleton在静态成员函数中隐藏创建实例的操作。习惯上把这个成员函数叫做Instance(),它的返回值是唯一实例的指针。

定义如下:

  1. class CSingleton  
  2. {  
  3. private:  
  4.     CSingleton()   //构造函数是私有的   
  5.     {  
  6.     }  
  7.     static CSingleton *m_pInstance;  
  8. public:  
  9.     static CSingleton * GetInstance()  
  10.     {  
  11.         if(m_pInstance == NULL)  //判断是否第一次调用   
  12.             m_pInstance = new CSingleton();  
  13.         return m_pInstance;  
  14.     }  
  15. };  
class CSingleton
{
private:
	CSingleton()   //构造函数是私有的
	{
	}
	static CSingleton *m_pInstance;
public:
	static CSingleton * GetInstance()
	{
		if(m_pInstance == NULL)  //判断是否第一次调用
			m_pInstance = new CSingleton();
		return m_pInstance;
	}
};
用户访问唯一实例的方法只有GetInstance()成员函数。如果不通过这个函数,任何创建实例的尝试都将失败,因为类的构造函数是私有的。GetInstance()使用 懒惰初始化,也就是说它的返回值是当这个函数首次被访问时被创建的 。这是一种防弹设计——所有GetInstance()之后的调用都返回相同实例的指针:

CSingleton* p1 = CSingleton :: GetInstance();
CSingleton* p2 = p1->GetInstance();
CSingleton & ref = * CSingleton :: GetInstance();
对GetInstance稍加修改,这个设计模板便可以适用于可变多实例情况,如一个类允许最多五个实例。
 
单例类CSingleton有以下特征:
它有一个指向唯一实例的静态指针m_pInstance,并且是私有的;
它有一个公有的函数,可以获取这个唯一的实例,并且在需要的时候创建该实例;
它的构造函数是私有的,这样就不能从别处创建该类的实例。
大多数时候,这样的实现都不会出现问题。有经验的读者可能会问,m_pInstance指向的空间什么时候释放呢?更严重的问题是,该实例的析构函数什么时候执行?
如果在类的析构行为中有必须的操作,比如关闭文件,释放外部资源,那么上面的代码无法实现这个要求。我们需要一种方法,正常的删除该实例。
可以在程序结束时调用GetInstance(),并对返回的指针掉用delete操作。这样做可以实现功能,但不仅很丑陋,而且容易出错。因为这样的附加代码很容易被忘记,而且也很难保证在delete之后,没有代码再调用GetInstance函数。
一个妥善的方法是让这个类自己知道在合适的时候把自己删除,或者说把删除自己的操作挂在操作系统中的某个合适的点上,使其在恰当的时候被自动执行。
我们知道,程序在结束的时候,系统会自动析构所有的全局变量。事实上,系统也会析构所有的类的静态成员变量,就像这些静态成员也是全局变量一样。利用这个特征,我们可以在单例类中定义一个这样的静态成员变量,而它的唯一工作就是在析构函数中删除单例类的实例。如下面的代码中的CGarbo类(Garbo意为垃圾工人):
  1. class CSingleton  
  2. {  
  3. private:  
  4.     CSingleton()  
  5.     {  
  6.     }  
  7.     static CSingleton *m_pInstance;  
  8.     class CGarbo   //它的唯一工作就是在析构函数中删除CSingleton的实例   
  9.     {  
  10.     public:  
  11.         ~CGarbo()  
  12.         {  
  13.             if(CSingleton::m_pInstance)  
  14.                 delete CSingleton::m_pInstance;  
  15.         }  
  16.     };  
  17.     static CGarbo Garbo;  //定义一个静态成员变量,程序结束时,系统会自动调用它的析构函数   
  18. public:  
  19.     static CSingleton * GetInstance()  
  20.     {  
  21.         if(m_pInstance == NULL)  //判断是否第一次调用   
  22.             m_pInstance = new CSingleton();  
  23.         return m_pInstance;  
  24.     }  
  25. };  
class CSingleton
{
private:
	CSingleton()
	{
	}
	static CSingleton *m_pInstance;
	class CGarbo   //它的唯一工作就是在析构函数中删除CSingleton的实例
	{
	public:
		~CGarbo()
		{
			if(CSingleton::m_pInstance)
				delete CSingleton::m_pInstance;
		}
	};
	static CGarbo Garbo;  //定义一个静态成员变量,程序结束时,系统会自动调用它的析构函数
public:
	static CSingleton * GetInstance()
	{
		if(m_pInstance == NULL)  //判断是否第一次调用
			m_pInstance = new CSingleton();
		return m_pInstance;
	}
};
类CGarbo被定义为CSingleton的私有内嵌类,以防该类被在其他地方滥用。
程序运行结束时,系统会调用CSingleton的静态成员Garbo的析构函数,该析构函数会删除单例的唯一实例。
使用这种方法释放单例对象有以下特征:
在单例类内部定义专有的嵌套类;
在单例类内定义私有的专门用于释放的静态成员;
利用程序在结束时析构全局变量的特性,选择最终的释放时机;
使用单例的代码不需要任何操作,不必关心对象的释放。


进一步的讨论

但是添加一个类的静态对象,总是让人不太满意,所以有人用如下方法来重现实现单例和解决它相应的问题,代码如下:

  1. class CSingleton  
  2. {  
  3. private:  
  4.     CSingleton()   //构造函数是私有的   
  5.     {  
  6.     }  
  7. public:  
  8.     static CSingleton & GetInstance()  
  9.     {  
  10.         static CSingleton instance;   //局部静态变量   
  11.         return instance;  
  12.     }  
  13. };  
class CSingleton
{
private:
	CSingleton()   //构造函数是私有的
	{
	}
public:
	static CSingleton & GetInstance()
	{
		static CSingleton instance;   //局部静态变量
		return instance;
	}
};
使用局部静态变量,非常强大的方法,完全实现了单例的特性,而且代码量更少,也不用担心单例销毁的问题。
但使用此种方法也会出现问题,当如下方法使用单例时问题来了,
Singleton singleton = Singleton :: GetInstance();
这么做就出现了一个类拷贝的问题,这就违背了单例的特性。产生这个问题原因在于:编译器会为类生成一个默认的构造函数,来支持类的拷贝。

最后没有办法,我们要禁止类拷贝和类赋值,禁止程序员用这种方式来使用单例,当时领导的意思是GetInstance()函数返回一个指针而不是返回一个引用,函数的代码改为如下:

  1. class CSingleton  
  2. {  
  3. private:  
  4.     CSingleton()   //构造函数是私有的   
  5.     {  
  6.     }  
  7. public:  
  8.     static CSingleton * GetInstance()  
  9.     {  
  10.         static CSingleton instance;   //局部静态变量   
  11.         return &instance;  
  12.     }  
  13. };  
class CSingleton
{
private:
	CSingleton()   //构造函数是私有的
	{
	}
public:
	static CSingleton * GetInstance()
	{
		static CSingleton instance;   //局部静态变量
		return &instance;
	}
};

但我总觉的不好,为什么不让编译器不这么干呢。这时我才想起可以显示的生命类拷贝的构造函数,和重载 = 操作符,新的单例类如下:

  1. class CSingleton  
  2. {  
  3. private:  
  4.     CSingleton()   //构造函数是私有的   
  5.     {  
  6.     }  
  7.     CSingleton(const CSingleton &);  
  8.     CSingleton & operator = (const CSingleton &);  
  9. public:  
  10.     static CSingleton & GetInstance()  
  11.     {  
  12.         static CSingleton instance;   //局部静态变量   
  13.         return instance;  
  14.     }  
  15. };  
class CSingleton
{
private:
	CSingleton()   //构造函数是私有的
	{
	}
	CSingleton(const CSingleton &);
	CSingleton & operator = (const CSingleton &);
public:
	static CSingleton & GetInstance()
	{
		static CSingleton instance;   //局部静态变量
		return instance;
	}
};
关于Singleton(const Singleton);和 Singleton & operate = (const Singleton&);函数,需要声明成私有的,并且只声明不实现。这样,如果用上面的方式来使用单例时,不管是在友元类中还是其他的,编译器都是报错。
不知道这样的单例类是否还会有问题,但在程序中这样子使用已经基本没有问题了。



### 单例模式的基本概念 单例模式是创建型设计模式的一种,其核心思想是确保一个类仅有一个实例,并提供一个全局访问点来获取这个实例。在程序运行期间,单例模式可以保证一个类只有一个实例对象,并提供全局访问接口[^1][^2][^4]。 ### 实现方法 #### 饿汉式 饿汉式在程序开始时就创建实例,线程安全,但可能会造成资源浪费。 ```cpp #include <iostream> class Singleton { public: static Singleton& getInstance() { return instance; } void showMessage() { std::cout << "Hello from Singleton!" << std::endl; } private: Singleton() { std::cout << "Singleton Constructor Called" << std::endl; } // 防止复制 Singleton(const Singleton&) = delete; Singleton& operator=(const Singleton&) = delete; static Singleton instance; }; Singleton Singleton::instance; int main() { Singleton& instance1 = Singleton::getInstance(); Singleton& instance2 = Singleton::getInstance(); instance1.showMessage(); if (&instance1 == &instance2) { std::cout << "Both instances are the same." << std::endl; } return 0; } ``` #### 懒汉式(非线程安全) 懒汉式在第一次使用时才创建实例,但非线程安全。 ```cpp #include <iostream> class Singleton { public: static Singleton* getInstance() { if (instance == nullptr) { instance = new Singleton(); } return instance; } void showMessage() { std::cout << "Hello from Singleton!" << std::endl; } private: Singleton() { std::cout << "Singleton Constructor Called" << std::endl; } // 防止复制 Singleton(const Singleton&) = delete; Singleton& operator=(const Singleton&) = delete; static Singleton* instance; }; Singleton* Singleton::instance = nullptr; int main() { Singleton* instance1 = Singleton::getInstance(); Singleton* instance2 = Singleton::getInstance(); instance1->showMessage(); if (instance1 == instance2) { std::cout << "Both instances are the same." << std::endl; } return 0; } ``` #### 懒汉式(线程安全) 使用互斥锁保证线程安全,但会有一定的性能开销。 ```cpp #include <iostream> #include <mutex> class Singleton { public: static Singleton& getInstance() { std::lock_guard<std::mutex> lock(mutex); if (instance == nullptr) { instance = new Singleton(); } return *instance; } void showMessage() { std::cout << "Hello from Singleton!" << std::endl; } private: Singleton() { std::cout << "Singleton Constructor Called" << std::endl; } // 防止复制 Singleton(const Singleton&) = delete; Singleton& operator=(const Singleton&) = delete; static Singleton* instance; static std::mutex mutex; }; Singleton* Singleton::instance = nullptr; std::mutex Singleton::mutex; int main() { Singleton& instance1 = Singleton::getInstance(); Singleton& instance2 = Singleton::getInstance(); instance1.showMessage(); if (&instance1 == &instance2) { std::cout << "Both instances are the same." << std::endl; } return 0; } ``` #### 基于局部静态变量(C++11及以上) 简洁、安全且高效,推荐使用。 ```cpp #include <iostream> class Singleton { public: static Singleton& getInstance() { static Singleton instance; return instance; } void showMessage() { std::cout << "Hello from Singleton!" << std::endl; } // 防止复制 Singleton(const Singleton&) = delete; Singleton& operator=(const Singleton&) = delete; private: Singleton() { std::cout << "Singleton Constructor Called" << std::endl; } }; int main() { Singleton& instance1 = Singleton::getInstance(); Singleton& instance2 = Singleton::getInstance(); instance1.showMessage(); if (&instance1 == &instance2) { std::cout << "Both instances are the same." << std::endl; } return 0; } ``` ### 使用场景 - **资源管理**:例如数据库连接池、文件系统操作等,避免多个实例同时操作同一资源导致冲突。 - **配置信息**:如全局的配置文件管理,确保所有模块使用相同的配置信息。 - **日志记录**:保证所有日志信息都记录到同一个日志文件中。 ### 注意事项 - **线程安全**:在多线程环境下,需要确保单例的创建和访问是线程安全的,可采用互斥锁或局部静态变量的方式。 - **生命周期管理**:确保单例对象在整个程序生命周期内的正确性,避免内存泄漏。 - **可测试性**:单例模式可能会影响代码的可测试性,可考虑使用依赖注入等技术来提高可测试性。 - **避免滥用**:单例模式会引入全局状态,过度使用可能导致代码耦合度增加,难以维护和扩展。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值