Request Flow for Provisioning Instance in Openstack

本文详细介绍了在OpenStack云环境中创建虚拟机实例的过程。涉及多个组件间的交互,如通过CLI或Dashboard提交请求、Nova调度器选择主机、Glance提供镜像、Neutron配置网络等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

One of the most important use-case in any cloud is provisioning a VM . In this article we shall do a walk through about an instance(VM) being provisioned in a Openstack based cloud. This article deals with the request flow and the component interaction of various projects under Openstack. The end result will be booting up a VM.



Provisioning a new instance involves the interaction between multiple components inside OpenStack :

  • CLI Command Line Interpreter for submitting commands to OpenStack Compute.
  • Dashboard (“Horizon”) provides the interface for all the OpenStack services.
  • Compute (“Nova”) retrieves virtual disks images(“Glance”) , attach flavor and associated metadata and transforms end user API requests into running instances.
  •  Network (“Quantum”) provides virtual networking for Compute which allows users to create their own networks and then link them to the instances.
  • Block Storage (“Cinder”) provides persistent storage volumes for Compute instances.
  • Image (“Glance”) can store the actual virtual disk files in the Image Store.
  • Identity (“Keystone”) provides authentication and authorization for all OpenStack services.
  • Message Queue(“RabbitMQ”) handles the internal communication within Openstack components such as Nova , Quantum and Cinder.

The request flow for provisioning an Instance goes like this:

  1. Dashboard or CLI gets the user credential and does the REST call to Keystone for authentication.
  2. Keystone authenticate the credentials and generate & send back auth-token which will be used for sending request to other Components through REST-call.
  3. Dashboard or CLI convert the new instance request specified in  ‘launch instance’ or ‘nova-boot’ form to REST API request and send it to nova-api.
  4. nova-api receive the request and sends the request for validation auth-token and access permission to keystone.
  5. Keystone validates the token and sends updated auth headers with roles and permissions.
  6. nova-api interacts with nova-database.
  7. Creates initial db entry for new instance.
  8.  nova-api sends the rpc.call request to nova-scheduler excepting to get  updated instance entry with host ID specified.
  9. nova-scheduler picks the request from the queue.
  10. nova-scheduler interacts with nova-database to find an appropriate host via filtering and weighing.
  11. Returns the updated instance entry with appropriate host ID after filtering and weighing.
  12. nova-scheduler sends the rpc.cast request to nova-compute for ‘launching instance’ on appropriate host .
  13. nova-compute picks the request from the queue.
  14. nova-compute send the rpc.call request to nova-conductor to fetch the instance information such as host ID and flavor( Ram , CPU ,Disk).
  15. nova-conductor picks the request from the queue.
  16. nova-conductor interacts with nova-database.
  17. Return the instance information.
  18. nova-compute picks the instance information from the queue.
  19. nova-compute does the REST call by passing auth-token to glance-api  to get the Image URI by Image ID from glance and upload image from image storage.
  20. glance-api validates the auth-token with keystone. 
  21. nova-compute get the image metadata.
  22. nova-compute does the REST-call by passing auth-token to Network API to allocate and configure the network such that instance gets the IP address. 
  23. quantum-server validates the auth-token with keystone.
  24. nova-compute get the network info.
  25. nova-compute does the REST call by passing auth-token to Volume API to attach volumes to instance.
  26. cinder-api validates the auth-token with keystone.
  27. nova-compute gets the block storage info.
  28. nova-compute generates data for hypervisor driver and executes request on Hypervisor( via libvirt or api).

内容概要:本文档详细介绍了Analog Devices公司生产的AD8436真均方根-直流(RMS-to-DC)转换器的技术细节及其应用场景。AD8436由三个独立模块构成:轨到轨FET输入放大器、高动态范围均方根计算内核和精密轨到轨输出放大器。该器件不仅体积小巧、功耗低,而且具有广泛的输入电压范围和快速响应特性。文档涵盖了AD8436的工作原理、配置选项、外部组件选择(如电容)、增益调节、单电源供电、电流互感器配置、接地故障检测、三相电源监测等方面的内容。此外,还特别强调了PCB设计注意事项和误差源分析,旨在帮助工程师更好地理解和应用这款高性能的RMS-DC转换器。 适合人群:从事模拟电路设计的专业工程师和技术人员,尤其是那些需要精确测量交流电信号均方根值的应用开发者。 使用场景及目标:①用于工业自动化、医疗设备、电力监控等领域,实现对交流电压或电流的精准测量;②适用于手持式数字万用表及其他便携式仪器仪表,提供高效的单电源解决方案;③在电流互感器配置中,用于检测微小的电流变化,保障电气安全;④应用于三相电力系统监控,优化建立时间和转换精度。 其他说明:为了确保最佳性能,文档推荐使用高质量的电容器件,并给出了详细的PCB布局指导。同时提醒用户关注电介质吸收和泄漏电流等因素对测量准确性的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值