0017-$(function(){})

本文介绍了一个常见的JavaScript用法——使用$(function(){}

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

$(function(){}) 是 $(document).ready(function(){}) 的简写,用来在DOM加载完成之后执行一系列预先定义好的函数。
regress total_revenue time intervention post intervention2 post2 intervention3 post3 Source | SS df MS Number of obs = 92 -------------+---------------------------------- F(7, 84) = 56.73 Model | 1.1913e+09 7 170187361 Prob > F = 0.0000 Residual | 251999700 84 2999996.43 R-squared = 0.8254 -------------+---------------------------------- Adj R-squared = 0.8109 Total | 1.4433e+09 91 15860563 Root MSE = 1732 ------------------------------------------------------------------------------- total_revenue | Coefficient Std. err. t P>|t| [95% conf. interval] --------------+---------------------------------------------------------------- time | 13.68935 45.29105 0.30 0.763 -76.37688 103.7556 intervention | -1200.838 1042.914 -1.15 0.253 -3274.786 873.1107 post | 384.8661 89.59558 4.30 0.000 206.6955 563.0368 intervention2 | -786.9447 1925.099 -0.41 0.684 -4615.215 3041.325 post2 | -2083.242 1890.292 -1.10 0.274 -5842.295 1675.81 intervention3 | -59.33553 924.8979 -0.06 0.949 -1898.596 1779.925 post3 | -307.4387 80.61474 -3.81 0.000 -467.75 -147.1275 _cons | 1190.531 660.2249 1.80 0.075 -122.3988 2503.46 ------------------------------------------------------------------------------- . . tsset monthnumber Time variable: monthnumber, 1 to 92 Delta: 1 unit . . estat dwatson Durbin–Watson d-statistic( 8, 92) = 1.466475 . . estat bgodfrey, lag(1/3) Breusch–Godfrey LM test for autocorrelation --------------------------------------------------------------------------- lags(p) | chi2 df Prob > chi2 -------------+------------------------------------------------------------- 1 | 6.212 1 0.0127 2 | 6.216 2 0.0447 3 | 12.260 3 0.0065 --------------------------------------------------------------------------- H0: no serial correlation . . predict e, r variable e already defined r(110); . . wntestq e, lag(1) Portmanteau test for white noise --------------------------------------- Portmanteau (Q) statistic = 6.2386 Prob > chi2(1) = 0.0125 . . actest, lags(92) Cumby-Huizinga test for autocorrelation (Breusch-Godfrey) H0: variable is MA process up to order q HA: serial correlation present at specified lags >q ----------------------------------------------------------------------------- H0: q=0 (serially uncorrelated) | H0: q=specified lag-1 HA: s.c. present at range specified | HA: s.c. present at lag specified -----------------------------------------+----------------------------------- lags | chi2 df p-val | lag | chi2 df p-val -----------+-----------------------------+-----+----------------------------- 1 - 1 | 6.212 1 0.0127 | 1 | 6.212 1 0.0127 1 - 2 | 6.216 2 0.0447 | 2 | 0.397 1 0.5285 1 - 3 | 12.260 3 0.0065 | 3 | 5.738 1 0.0166 1 - 4 | 12.313 4 0.0152 | 4 | 0.684 1 0.4082 1 - 5 | 12.785 5 0.0255 | 5 | 0.369 1 0.5436 1 - 6 | 13.695 6 0.0332 | 6 | 0.012 1 0.9137 1 - 7 | 13.709 7 0.0566 | 7 | 0.118 1 0.7315 1 - 8 | 15.952 8 0.0431 | 8 | 1.691 1 0.1934 1 - 9 | 16.599 9 0.0554 | 9 | 2.700 1 0.1003 1 - 10 | 26.773 10 0.0028 | 10 | 10.045 1 0.0015 1 - 11 | 26.777 11 0.0050 | 11 | 1.933 1 0.1645 1 - 12 | 32.096 12 0.0013 | 12 | 2.667 1 0.1024 1 - 13 | 41.132 13 0.0001 | 13 | 8.395 1 0.0038 1 - 14 | 42.300 14 0.0001 | 14 | 7.043 1 0.0080 1 - 15 | 43.214 15 0.0001 | 15 | 0.179 1 0.6722 1 - 16 | 43.224 16 0.0003 | 16 | 1.571 1 0.2100 1 - 17 | 43.377 17 0.0004 | 17 | 0.400 1* 0.5270 1 - 18 | 43.389 18 0.0007 | 18 | 0.000 1* 0.9965 1 - 19 | 43.404 19 0.0011 | 19 | 0.016 1* 0.9004 1 - 20 | 43.805 20 0.0016 | 20 | 0.030 1* 0.8622 1 - 21 | 43.823 21 0.0025 | 21 | 0.140 1* 0.7086 1 - 22 | 44.540 22 0.0030 | 22 | 0.530 1* 0.4665 1 - 23 | 45.524 23 0.0034 | 23 | 2.256 1* 0.1331 1 - 24 | 57.494 24 0.0001 | 24 | 0.292 1* 0.5888 1 - 25 | 57.530 25 0.0002 | 25 | 5.324 1* 0.0210 1 - 26 | 57.778 26 0.0003 | 26 | 0.710 1* 0.3993 1 - 27 | 63.979 27 0.0001 | 27 | 0.651 1* 0.4199 1 - 28 | 64.073 28 0.0001 | 28 | 0.655 1* 0.4182 1 - 29 | 64.746 29 0.0002 | 29 | 0.052 1* 0.8200 1 - 30 | 66.005 30 0.0002 | 30 | 0.184 1* 0.6679 1 - 31 | 67.208 31 0.0002 | 31 | 0.417 1* 0.5183 1 - 32 | 67.667 32 0.0002 | 32 | 0.397 1* 0.5288 1 - 33 | 67.667 33 0.0004 | 33 | 4.958 1* 0.0260 1 - 34 | 69.636 34 0.0003 | 34 | 1.180 1* 0.2774 1 - 35 | 69.886 35 0.0004 | 35 | 12.184 1* 0.0005 1 - 36 | 70.300 36 0.0005 | 36 | 1.640 1 0.2003 1 - 37 | 72.178 37 0.0005 | 37 | 0.050 1 0.8232 1 - 38 | 72.397 38 0.0006 | 38 | 4.127 1 0.0422 1 - 39 | 73.398 39 0.0007 | 39 | 0.006 1 0.9395 1 - 40 | 73.441 40 0.0010 | 40 | 0.061 1 0.8056 1 - 41 | 73.456 41 0.0014 | 41 | 0.016 1 0.8986 1 - 42 | 73.777 42 0.0018 | 42 | 0.337 1 0.5616 1 - 43 | 77.179 43 0.0011 | 43 | 1.222 1 0.2689 1 - 44 | 78.615 44 0.0010 | 44 | 2.095 1 0.1478 1 - 45 | 79.395 45 0.0012 | 45 | 1.213 1 0.2708 1 - 46 | 82.801 46 0.0007 | 46 | 9.541 1 0.0020 1 - 47 | 84.728 47 0.0006 | 47 | 4.054 1 0.0441 1 - 48 | 84.974 48 0.0008 | 48 | 3.043 1 0.0811 1 - 49 | 85.513 49 0.0010 | 49 | 3.186 1* 0.0743 1 - 50 | 85.526 50 0.0013 | 50 | 0.087 1* 0.7677 1 - 51 | 85.539 51 0.0017 | 51 | 0.018 1* 0.8937 1 - 52 | 86.014 52 0.0021 | 52 | 0.583 1* 0.4453 1 - 53 | 86.853 53 0.0023 | 53 | 0.774 1* 0.3790 1 - 54 | 88.402 54 0.0022 | 54 | 2.711 1* 0.0996 1 - 55 | 89.730 55 0.0022 | 55 | 2.815 1* 0.0934 1 - 56 | 89.731 56 0.0028 | 56 | 4.506 1 0.0338 1 - 57 | 89.755 57 0.0037 | 57 | 3.154 1 0.0757 1 - 58 | 90.496 58 0.0041 | 58 | 0.002 1 0.9611 1 - 59 | 90.802 59 0.0049 | 59 | 0.025 1 0.8737 1 - 60 | 90.932 60 0.0061 | 60 | 2.576 1 0.1085 1 - 61 | 90.981 61 0.0077 | 61 | 0.777 1 0.3779 1 - 62 | 91.002 62 0.0096 | 62 | 4.994 1 0.0254 1 - 63 | 91.037 63 0.0120 | 63 | 2.119 1 0.1455 1 - 64 | 91.102 64 0.0147 | 64 | 0.292 1 0.5889 1 - 65 | 91.241 65 0.0176 | 65 | 1.505 1 0.2199 1 - 66 | 91.541 66 0.0205 | 66 | 0.036 1 0.8487 1 - 67 | 91.541 67 0.0249 | 67 | 1.027 1 0.3110 1 - 68 | 91.853 68 0.0286 | 68 | 0.011 1 0.9176 1 - 69 | 91.885 69 0.0342 | 69 | 1.922 1 0.1657 1 - 70 | 91.904 70 0.0407 | 70 | 0.260 1 0.6103 1 - 71 | 91.909 71 0.0483 | 71 | 0.634 1 0.4258 1 - 72 | 91.921 72 0.0568 | 72 | 8.680 1 0.0032 1 - 73 | 91.923 73 0.0665 | 73 | 0.741 1 0.3893 1 - 74 | 91.935 74 0.0773 | 74 | 1.741 1 0.1870 1 - 75 | 91.949 75 0.0893 | 75 | 1.341 1 0.2468 1 - 76 | 91.958 76 0.1026 | 76 | 0.444 1 0.5054 1 - 77 | 91.962 77 0.1174 | 77 | 1.811 1 0.1784 1 - 78 | 91.984 78 0.1332 | 78 | 1.111 1 0.2920 1 - 79 | 91.981 79 0.1507 | 79 | 0.105 1 0.7464 1 - 80 | 91.983 80 0.1696 | 80 | 1.611 1 0.2043 1 - 81 | 91.984 81 0.1898 | 81 | 0.004 1 0.9489 1 - 82 | 91.983 82 0.2114 | 82 | 0.256 1 0.6129 1 - 83 | 91.983 83 0.2343 | 83 | 2.378 1 0.1230 1 - 84 | 91.985 84 0.2583 | 84 | 2.199 1 0.1381 1 - 85 | 91.984 85 0.2835 | 85 | 0.584 1 0.4449 1 - 86 | 91.984 86 0.3097 | 86 | 2.121 1 0.1453 1 - 87 | 91.984 87 0.3368 | 87 | 0.280 1 0.5966 1 - 88 | 91.984 88 0.3647 | 88 | 0.696 1 0.4043 1 - 89 | 91.984 89 0.3932 | 89 | 0.187 1 0.6654 1 - 90 | 91.984 90 0.4221 | 90 | 1.533 1 0.2156 1 - 91 | 91.984 91 0.4514 | 91 | 1.980 1 0.1594 1 - 92 | 91.984 92 0.4808 | 92 | 0.000 1 1.0000 ----------------------------------------------------------------------------- Test allows predetermined regressors/instruments Test requires conditional homoskedasticity * Eigenvalues adjusted to make matrix positive semidefinite . . itsa total_revenue, single trperiod(27;45;52) lag(4) replace figure Time variable: monthnumber, 1 to 92 Delta: 1 unit Iteration 0: log likelihood = -810.9219 Generalized linear models Number of obs = 92 Optimization : ML Residual df = 84 Scale parameter = 2904674 Deviance = 243992583 (1/df) Deviance = 2904674 Pearson = 243992583 (1/df) Pearson = 2904674 Variance function: V(u) = 1 [Gaussian] Link function : g(u) = u [Identity] HAC kernel (lags): Newey–West (4) AIC = 17.80265 Log likelihood = -810.9218962 BIC = 2.44e+08 -------------------------------------------------------------------------------- | HAC _total_revenue | Coefficient std. err. z P>|z| [95% conf. interval] ---------------+---------------------------------------------------------------- _t | 13.68935 2.93475 4.66 0.000 7.937344 19.44135 _x27 | -1405.277 692.9926 -2.03 0.043 -2763.517 -47.03648 _x_t27 | 408.9178 55.60065 7.35 0.000 299.9425 517.8931 _x45 | -882.9179 618.7542 -1.43 0.154 -2095.654 329.818 _x_t45 | -663.4364 85.57417 -7.75 0.000 -831.1587 -495.7141 _x52 | 2200.597 694.1669 3.17 0.002 840.0553 3561.139 _x_t52 | 331.946 70.97444 4.68 0.000 192.8387 471.0533 _cons | 1190.531 42.39444 28.08 0.000 1107.439 1273.622 --------------------------------------------------------------------------------
07-01
资源下载链接为: https://pan.quark.cn/s/22ca96b7bd39 在当今的软件开发领域,自动化构建与发布是提升开发效率和项目质量的关键环节。Jenkins Pipeline作为一种强大的自动化工具,能够有效助力Java项目的快速构建、测试及部署。本文将详细介绍如何利用Jenkins Pipeline实现Java项目的自动化构建与发布。 Jenkins Pipeline简介 Jenkins Pipeline是运行在Jenkins上的一套工作流框架,它将原本分散在单个或多个节点上独立运行的任务串联起来,实现复杂流程的编排与可视化。它是Jenkins 2.X的核心特性之一,推动了Jenkins从持续集成(CI)向持续交付(CD)及DevOps的转变。 创建Pipeline项目 要使用Jenkins Pipeline自动化构建发布Java项目,首先需要创建Pipeline项目。具体步骤如下: 登录Jenkins,点击“新建项”,选择“Pipeline”。 输入项目名称和描述,点击“确定”。 在Pipeline脚本中定义项目字典、发版脚本和预发布脚本。 编写Pipeline脚本 Pipeline脚本是Jenkins Pipeline的核心,用于定义自动化构建和发布的流程。以下是一个简单的Pipeline脚本示例: 在上述脚本中,定义了四个阶段:Checkout、Build、Push package和Deploy/Rollback。每个阶段都可以根据实际需求进行配置和调整。 通过Jenkins Pipeline自动化构建发布Java项目,可以显著提升开发效率和项目质量。借助Pipeline,我们能够轻松实现自动化构建、测试和部署,从而提高项目的整体质量和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值