训练大模型Qwen15-05B-Chat-GPTQ-Int4
训练使用qwen1.5 sft:
命令:python finetune.py --model_name_or_path /llm/Qwen15-05B-Chat-GPTQ-Int4
–output_dir ./checkpoints
–model_max_length 512
–data_path /data/agi/dataset/train_0.5M_CN/output600.jsonl
–use_lora True
–per_device_train_batch_size 1
–q_lora True
–learning_rate 5e-4
运行报错:
ValueError: Found modules on cpu/disk. Using Exllama backend requires all the modules to be on GPU.You can deactivate exllama backend by setting disable_exllama=True
in the quantization config object
处理:
1) 修改finetune.py。
model = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
config=config,
cache_dir=training_args.cache_dir,
device_map=device_map,
quantization_config=GPTQConfig(
bits=4,
disable_exllama=True) # 添加修改