POJ P1151 Atlantis 这本是一道线段树加扫描线的板题~~

本文介绍使用二维树状数组解决地图面积计算问题的方法。通过容斥原理和离散化处理,实现区间修改与单点查询,有效计算多个矩形区域的并集面积。

Atlantis
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 17656 Accepted: 6717

Description

There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.

Input

The input consists of several test cases. Each test case starts with a line containing a single integer n (1 <= n <= 100) of available maps. The n following lines describe one map each. Each of these lines contains four numbers x1;y1;x2;y2 (0 <= x1 < x2 <= 100000;0 <= y1 < y2 <= 100000), not necessarily integers. The values (x1; y1) and (x2;y2) are the coordinates of the top-left resp. bottom-right corner of the mapped area. 
The input file is terminated by a line containing a single 0. Don't process it.

Output

For each test case, your program should output one section. The first line of each section must be "Test case #k", where k is the number of the test case (starting with 1). The second one must be "Total explored area: a", where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point. 
Output a blank line after each test case.

Sample Input

2
10 10 20 20
15 15 25 25.5
0

Sample Output

Test case #1
Total explored area: 180.00 

Source



本来是一道扫描线的板题,我在做这题时没搞懂扫描线,所以一直在想四分树可不可能做出这题,但是四分树能做的事情太多了,做这题一定是大材小用,故我想到了二维树状数组,我的上一篇博文中讲到,二维树状数组可以做的事情,单点修改加区间查询,或者区间修改加单点查询,这题就属于区间修改加单点查询,它查询只要每个点都查询一遍,修改就是之前图形的不断覆盖,配合容斥定理轻松搞定这题,不过记得加上离散化。


代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<ctime>
#include<string>
#include<cstring>
#include<algorithm>
#include<fstream>
#include<queue>
#include<stack> 
#include<vector>
#include<cmath>
#include<map>
#include<iomanip>
#define rep(i,n) for(i=1;i<=n;i++)
#define MM(a,t) memset(a,t,sizeof(a))
#define lowbit(a) a&(-a)
#define INF 1e9
typedef long long ll;
#define mod 1000000007
using namespace std;
int n,xyn[2]; 
struct node{
	double x1,y1,x2,y2;
}a[120];
double xyv[2][220]; 
map<double,int> ha[2];
int bita[220][220];
void update(int x,int y,int num){
  int i,j;
  
  for(i=x;i>0;i-=lowbit(i))
    for(j=y;j>0;j-=lowbit(j))
      bita[i][j]+=num;
  
}
int query(int x,int y){
	int i,j,res=0;
	
	for(i=x;i<=xyn[0];i+=lowbit(i))
	  for(j=y;j<=xyn[1];j+=lowbit(j)){
          res=res+bita[i][j];
  	    }
   
   return res;
}
void pushin(int xy,double v){
	if(ha[xy][v]==0 && v!=0){
	  xyv[xy][++xyn[xy]]=v;
	  ha[xy][v]=1;
	}
}
double cal(int xi,int yi){
  double x1=xyv[0][xi]*1.0-xyv[0][xi-1],y1=xyv[1][yi]*1.0-xyv[1][yi-1];
  return x1*y1;	
}
int main()
{
	int i,j,n2=0;

    while(scanf("%d",&n)!=EOF){
   	   if(n==0) break;
       ha[0].clear(); ha[1].clear(); 	
       xyn[0]=0; xyn[1]=0;
       xyv[0][0]=0; xyv[1][0]=0;
       rep(i,n){
       	 double x1,y1,x2,y2;
       	 scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
       	 a[i].x1=x1; a[i].x2=x2;
       	 a[i].y1=y1; a[i].y2=y2;
       	 pushin(0,x1); pushin(0,x2);
       	 pushin(1,y1); pushin(1,y2);
       }
       sort(xyv[0]+1,xyv[0]+1+xyn[0]);
       rep(i,xyn[0]) ha[0][xyv[0][i]]=i;
       sort(xyv[1]+1,xyv[1]+1+xyn[1]);
       rep(i,xyn[1]) ha[1][xyv[1][i]]=i;
       MM(bita,0);
       rep(i,n){
       	 int x1=ha[0][a[i].x1],y1=ha[1][a[i].y1],x2=ha[0][a[i].x2],y2=ha[1][a[i].y2];
		 update(x1,y1,1); update(x2,y2,1);
		 update(x1,y2,-1); update(x2,y1,-1);
       }
       double res=0.0;
       rep(i,xyn[0])
         rep(j,xyn[1])
           if(query(i,j)){
           	 res+=cal(i,j);
           }
       printf("Test case #%d\n",++n2);
       printf("Total explored area: %.2lf\n",res);
       cout<<'\n';
    }
	
	return 0;
}




基于STM32 F4的永磁同步电机无位置传感器控制策略研究内容概要:本文围绕基于STM32 F4的永磁同步电机(PMSM)无位置传感器控制策略展开研究,重点探讨在不依赖物理位置传感器的情况下,如何通过算法实现对电机转子位置和速度的精确估计与控制。文中结合嵌入式开发平台STM32 F4,采用如滑模观测器、扩展卡尔曼滤波或高频注入法等先进观测技术,实现对电机反电动势或磁链的估算,进而完成无传感器矢量控制(FOC)。同时,研究涵盖系统建模、控制算法设计、仿真验证(可能使用Simulink)以及在STM32硬件平台上的代码实现与调试,旨在提高电机控制系统的可靠性、降低成本并增强环境适应性。; 适合人群:具备一定电力电子、自动控制理论基础和嵌入式开发经验的电气工程、自动化及相关专业的研究生、科研人员及从事电机驱动开发的工程师。; 使用场景及目标:①掌握永磁同步电机无位置传感器控制的核心原理与实现方法;②学习如何在STM32平台上进行电机控制算法的移植与优化;③为开发高性能、低成本的电机驱动系统提供技术参考与实践指导。; 阅读建议:建议读者结合文中提到的控制理论、仿真模型与实际代码实现进行系统学习,有条件者应在实验平台上进行验证,重点关注观测器设计、参数整定及系统稳定性分析等关键环节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值