dp[1][i]:
DD选择的时候,剩余i石子,DD赢的最小步数。若此时DD是必败态,则为-1;
dp[2][i]:
MM选择的时候,剩余i石子,MM输的最大步数。若此时DD是必胜态,则为-1;
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<math.h>
using namespace std;
#define maxn 20050
int prime[maxn];
int isprime[maxn];
int nearprime[maxn];
int numprime;
int dp[3][maxn];
void dos()
{
prime[0]=0;
prime[1]=0;
prime[2]=1;
for(int i=3;i<maxn;i++)prime[i]=i%2;
for(int i=2;i<sqrt(maxn);i++)
{
if(prime[i]==0)continue;
for(int j=2;j*i<maxn;j++)
{
prime[j*i]=0;
}
}
numprime=0;
for(int i=0;i<maxn;i++)
{
if(prime[i])isprime[numprime++]=i;
nearprime[i]=numprime-1;
}
}
int pan(int people,int n)
{
int i;
if(dp[people][n]!=-2)return dp[people][n];
if(people==1)
{
int leap=0;
dp[1][n]=9999999;
if(prime[n]||prime[n-1])
{
dp[1][n]=1;
return 1;
}
for(i=0;i<=nearprime[n];i++)
{
if(pan(2,n-isprime[i])>-1)
{
dp[1][n]=min(dp[1][n],dp[2][n-isprime[i]]+1);
leap=1;
}
}
if(leap==0)dp[1][n]=-1;
}
else if(people==2)
{
dp[2][n]=0;
if(prime[n]||prime[n-1])
{
dp[2][n]=-1;
return -1;
}
for(i=0;i<=nearprime[n];i++)
{
if(pan(1,n-isprime[i])==-1)
{
dp[2][n]=-1;
break;
}
else
{
dp[2][n]=max(dp[1][n-isprime[i]]+1,dp[2][n]);
}
}
}
return dp[people][n];
}
void play()
{
dos();
int i;
for(i=0;i<maxn;i++)dp[1][i]=dp[2][i]=-2;
dp[1][0]=-1;
dp[1][1]=-1;
dp[1][2]=1;
dp[2][0]=0;
dp[2][1]=0;
dp[2][2]=-1;
for(i=3;i<maxn;i++)
{
dp[1][i]=pan(1,i);
}
}
int main()
{
int n,m;
play();
scanf("%d",&n);
while(n--)
{
scanf("%d",&m);
printf("%d\n",dp[1][m]);
}
return 0;
}