目录
https://leetcode.cn/problems/squares-of-a-sorted-array/
https://leetcode.cn/problems/minimum-size-subarray-sum/
https://leetcode.cn/problems/spiral-matrix-ii/
题目:977.有序数组的平方
https://leetcode.cn/problems/squares-of-a-sorted-array/
给你一个按 非递减顺序 排序的整数数组
nums
,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
可采用双指针法进行求解。注意到是有序数组,通过比较数组中第一个元素的平方和最后一个元素平方就可以得到新数组的最后一个元素(最大值)。数组平方的最大值只可能出现在两端,考虑双指针法,i指向起始位置,j指向终止位置。定义一个新数组,和原数组一样大小,让k指向result数组终止位置。
class Solution {
public:
vector<int> sortedSquares(vector<int>& nums) {
vector<int> result(nums.size(), 0);
int k=nums.size()-1;
for(int i=0,j=nums.size()-1;i<=j;)
{
if(nums[i]*nums[i]>nums[j]*nums[j])
{
result[k--]=nums[i]*nums[i];
i++;
}
else
{
result[k--]=nums[j]*nums[j];
j--;
}
}
return result;
}
};
题目:209.长度最小的子数组
https://leetcode.cn/problems/minimum-size-subarray-sum/
给定一个含有 n 个正整数的数组和一个正整数 target 。
找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl+1, ..., numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。
方法1:暴力解法
两个for循环,一个for循环为滑动窗口的终止位置,一个for循环为滑动窗口的起始位置。从而实现了一个不断搜索区间的过程。
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
int result = INT32_MAX; // 最终的结果
int sum = 0; // 子序列的数值之和
int subLength = 0; // 子序列的长度
for (int i = 0; i < nums.size(); i++) { // 设置子序列起点为i
sum = 0;
for (int j = i; j < nums.size(); j++) { // 设置子序列终止位置为j
sum += nums[j];
if (sum >= s) { // 一旦发现子序列和超过了s,更新result
subLength = j - i + 1; // 取子序列的长度
result = result < subLength ? result : subLength;
break; // 因为我们是找符合条件最短的子序列,所以一旦符合条件就break
}
}
}
// 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
return result == INT32_MAX ? 0 : result;
}
};
方法2:滑动窗口(双指针的思想)
窗口:其和≥s的连续子数组
窗口的起始位置如何移动:如果当前窗口的值大于s了,窗口就要向前移动了(也就是该缩小了)。
窗口的结束位置如何移动:窗口的结束位置就是遍历数组的指针,也就是for循环里的索引。
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
int result = INT32_MAX;
int sum = 0; // 滑动窗口数值之和
int i = 0; // 滑动窗口起始位置
int subLength = 0; // 滑动窗口的长度
for (int j = 0; j < nums.size(); j++) {
sum += nums[j];
// 注意这里使用while,每次更新 i(起始位置),并不断比较子序列是否符合条件
while (sum >= s) {
subLength = (j - i + 1); // 取子序列的长度
result = result < subLength ? result : subLength;
sum -= nums[i++]; // 这里体现出滑动窗口的精髓之处,不断变更i(子序列的起始位置)
}
}
// 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
return result == INT32_MAX ? 0 : result;
}
};
题目:59.螺旋矩阵II
https://leetcode.cn/problems/spiral-matrix-ii/
给你一个正整数
n
,生成一个包含1
到n2
所有元素,且元素按顺时针顺序螺旋排列的n x n
正方形矩阵matrix
。
主要是边界条件的处理,这里要坚持循环不变量的原则。
按照左闭右开的原则,画圈,一个圈有四条边,每条边都坚持左闭右开或者左开右闭的原则。如图所示:
左闭右开:
代码如下:
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
vector<vector<int>> res(n, vector<int>(n, 0)); // 使用vector定义一个二维数组
int startx = 0, starty = 0; // 定义每循环一个圈的起始位置
int loop = n / 2; // 每个圈循环几次,例如n为奇数3,那么loop = 1 只是循环一圈,矩阵中间的值需要单独处理
int mid = n / 2; // 矩阵中间的位置,例如:n为3, 中间的位置就是(1,1),n为5,中间位置为(2, 2)
int count = 1; // 用来给矩阵中每一个空格赋值
int offset = 1; // 需要控制每一条边遍历的长度,每次循环右边界收缩一位
int i,j;
while (loop --) {
i = startx;
j = starty;
// 下面开始的四个for就是模拟转了一圈
// 模拟填充上行从左到右(左闭右开)
for (j = starty; j < n - offset; j++) {
res[startx][j] = count++;
}
// 模拟填充右列从上到下(左闭右开)
for (i = startx; i < n - offset; i++) {
res[i][j] = count++;
}
// 模拟填充下行从右到左(左闭右开)
for (; j > starty; j--) {
res[i][j] = count++;
}
// 模拟填充左列从下到上(左闭右开)
for (; i > startx; i--) {
res[i][j] = count++;
}
// 第二圈开始的时候,起始位置要各自加1, 例如:第一圈起始位置是(0, 0),第二圈起始位置是(1, 1)
startx++;
starty++;
// offset 控制每一圈里每一条边遍历的长度
offset += 1;
}
// 如果n为奇数的话,需要单独给矩阵最中间的位置赋值
if (n % 2) {
res[mid][mid] = count;
}
return res;
}
};