If you have the output of the covariance matrix (CovMat) you can visualize it with imagesc(CovMat). If you want the cross correlation map (CCMap) you can obtain this with:
CCmap = zeros(length(CovMat)/3,length(CovMat)/3);
for i = 1:length(CCmap);
for j = 1:length(CCmap);
CCmap(i,j)= trace(CovMat(3*i-2:3*i,3*j-2:3*j))/(sqrt(trace(CovMat(3*i-2:3*i,3*i-2:3*i)))*sqrt(trace(CovMat(3*j-2:3*j,3*j-2:3*j))));
end
end
imagesc(CCmap)
I'm not sure what you mean by visualize the different eigenvectors. If you want to see the vectors plotted on the protein what I have used was NMWiz a plugin for VMD. Information here: http://www.csb.pitt.edu/ProDy/plugins/index.html
CCmap = zeros(length(CovMat)/3,length(CovMat)/3);
for i = 1:length(CCmap);
for j = 1:length(CCmap);
CCmap(i,j)= trace(CovMat(3*i-2:3*i,3*j-2:3*j))/(sqrt(trace(CovMat(3*i-2:3*i,3*i-2:3*i)))*sqrt(trace(CovMat(3*j-2:3*j,3*j-2:3*j))));
end
end
imagesc(CCmap)
I'm not sure what you mean by visualize the different eigenvectors. If you want to see the vectors plotted on the protein what I have used was NMWiz a plugin for VMD. Information here: http://www.csb.pitt.edu/ProDy/plugins/index.html
本文介绍了一种将协方差矩阵(CovMat)转换为图像的方法,利用MATLAB的imagesc函数进行可视化,并通过双重循环计算得到交叉相关性映射(CCMap)。此外还提到了使用NMWiz插件在VMD中展示不同特征向量的可能性。
2032

被折叠的 条评论
为什么被折叠?



