In SQL, what's the difference between an inner and outer join?

本文详细解释了SQL中内连接和外连接的区别,并通过实例展示了左连接、右连接及全连接的具体应用方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Joins are used to combine the data from two tables, with the result being a new, temporary table. The temporary table is created based on column(s) that the two tables share, which represent meaningful column(s) of comparison. The goal is to extract meaningful data from the resulting temporary table. Joins are performed based on something called a predicate, which specifies the condition to use in order to perform a join. A join can be either an inner join or an outer join, depending on how one wants the resulting table to look.

It is best to illustrate the differences between inner and outer joins by use of an example. Here we have 2 tables that we will use for our example:

EmployeeLocation
EmpIDEmpName
13Jason
8Alex
3Ram
17Babu
25Johnson
EmpIDEmpLoc
13San Jose
8Los Angeles
3Pune, India
17Chennai, India
39Bangalore, India

It’s important to note that the very last row in the Employee table does not exist in the Employee Location table. Also, the very last row in the Employee Location table does not exist in the Employee table. These facts will prove to be significant in the discussion that follows.

Outer Joins

Let’s start the explanation with outer joins. Outer joins can be be further divided into left outer joins, right outer joins, and full outer joins. Here is what the SQL for a left outer join would look like, using the tables above:

select * from employee left outer join location 
on employee.empID = location.empID;

In this SQL we are joining on the condition that the employee ID’s match in the rows tables. So, we will be essentially combining 2 tables into 1, based on the condition that the employee ID’s match. Note that we can get rid of the "outer" in left outer join, which will give us the SQL below. This is equivalent to what we have above.

select * from employee left join location 
on employee.empID = location.empID;

A left outer join retains all of the rows of the left table, regardless of whether there is a row that matches on the right table. The SQL above will give us the result set shown below.

Employee.EmpIDEmployee.EmpNameLocation.EmpIDLocation.EmpLoc
13Jason13San Jose
8Alex8Los Angeles
3Ram3Pune, India
17Babu17Chennai, India
25JohnsonNULLNULL


Earlier we had mentioned something called a join predicate. In the SQL above, the join predicate is "on employee.empID = location.empID". This is the heart of any type of join, because it determines what common column between the 2 tables will be used to "join" the 2 tables. As you can see from the result set, all of the rows from the left table are returned when we do a left outer join. The last row of the Employee table (which contains the "Johson" entry) is displayed in the results even though there is no matching row in the Location table. As you can see, the non-matching columns in the last row are filled with a "NULL". So, we have "NULL" as the entry wherever there is no match.

A right outer join is pretty much the same thing as a left outer join, except that the rows that are retained are from the right table. This is what the SQL looks like:

select * from employee right outer join location 
on employee.empID = location.empID;

// taking out the "outer", this also works:

select * from employee right join location 
on employee.empID = location.empID;

Using the tables presented above, we can show what the result set of a right outer join would look like:

Employee.EmpIDEmployee.EmpNameLocation.EmpIDLocation.EmpLoc
13Jason13San Jose
8Alex8Los Angeles
3Ram3Pune, India
17Babu17Chennai, India
NULLNULL39Bangalore, India

We can see that the last row returned in the result set contains the row that was in the Location table, but not in the Employee table (the "Bangalore, India" entry). Because there is no matching row in the Employee table that has an employee ID of "39", we have NULL’s in the result set for the Employee columns.

Inner Joins

Now that we’ve gone over outer joins, we can contrast those with the inner join. The difference between an inner join and an outer join is that an inner join will return only the rows that actually match based on the join predicate. Once again, this is best illustrated via an example. Here’s what the SQL for an inner join will look like:

select * from employee inner join location on 
employee.empID = location.empID

This can also be written as:

select * from employee, location
where employee.empID = location.empID
              

Now, here is what the result of running that SQL would look like:

Employee.EmpIDEmployee.EmpNameLocation.EmpIDLocation.EmpLoc
13Jason13San Jose
8Alex8Los Angeles
3Ram3Pune, India
17Babu17Chennai, India

Inner vs Outer Joins

We can see that an inner join will only return rows in which there is a match based on the join predicate. In this case, what that means is anytime the Employee and Location table share an Employee ID, a row will be generated in the results to show the match. Looking at the original tables, one can see that those Employee ID’s that are shared by those tables are displayed in the results. But, with a left or right outer join, the result set will retain all of the rows from either the left or right table.

Reference: http://www.programmerinterview.com/index.php/database-sql/inner-vs-outer-joins/

1. 用户与身体信息管理模块 用户信息管理: 注册登录:支持手机号 / 邮箱注册,密码加密存储,提供第三方快捷登录(模拟) 个人资料:记录基本信息(姓名、年龄、性别、身高、体重、职业) 健康目标:用户设置目标(如 “减重 5kg”“增肌”“维持健康”)及期望周期 身体状态跟踪: 体重记录:定期录入体重数据,生成体重变化曲线(折线图) 身体指标:记录 BMI(自动计算)、体脂率(可选)、基础代谢率(根据身高体重估算) 健康状况:用户可填写特殊情况(如糖尿病、过敏食物、素食偏好),系统据此调整推荐 2. 膳食记录与食物数据库模块 食物数据库: 基础信息:包含常见食物(如米饭、鸡蛋、牛肉)的名称、类别(主食 / 肉类 / 蔬菜等)、每份重量 营养成分:记录每 100g 食物的热量(kcal)、蛋白质、脂肪、碳水化合物、维生素、矿物质含量 数据库维护:管理员可添加新食物、更新营养数据,支持按名称 / 类别检索 膳食记录功能: 快速记录:用户选择食物、输入食用量(克 / 份),系统自动计算摄入的营养成分 餐次分类:按早餐 / 午餐 / 晚餐 / 加餐分类记录,支持上传餐食照片(可选) 批量操作:提供常见套餐模板(如 “三明治 + 牛奶”),一键添加到记录 历史记录:按日期查看过往膳食记录,支持编辑 / 删除错误记录 3. 营养分析模块 每日营养摄入分析: 核心指标计算:统计当日摄入的总热量、蛋白质 / 脂肪 / 碳水化合物占比(按每日推荐量对比) 微量营养素分析:检查维生素(如维生素 C、钙、铁)的摄入是否达标 平衡评估:生成 “营养平衡度” 评分(0-100 分),指出摄入过剩或不足的营养素 趋势分析: 周 / 月营养趋势:用折线图展示近 7 天 / 30 天的热量、三大营养素摄入变化 对比分析:将实际摄入与推荐量对比(如 “蛋白质摄入仅达到推荐量的 70%”) 目标达成率:针对健
1. 用户管理模块 用户注册与认证: 注册:用户填写身份信息(姓名、身份证号、手机号)、设置登录密码(需符合复杂度要求),系统生成唯一客户号 登录:支持账号(客户号 / 手机号)+ 密码登录,提供验证码登录、忘记密码(通过手机验证码重置)功能 身份验证:注册后需完成实名认证(模拟上传身份证照片,系统标记认证状态) 个人信息管理: 基本信息:查看 / 修改联系地址、紧急联系人、邮箱等非核心信息(身份证号等关键信息不可修改) 安全设置:修改登录密码、设置交易密码(用于转账等敏感操作)、开启 / 关闭登录提醒 权限控制:普通用户仅能操作本人账户;管理员可管理用户信息、查看系统统计数据 2. 账户与资金管理模块 账户管理: 账户创建:用户可开通储蓄卡账户(默认 1 个主账户,支持最多 3 个子账户,如 “日常消费账户”“储蓄账户”) 账户查询:查看各账户余额、开户日期、状态(正常 / 冻结)、交易限额 账户操作:挂失 / 解挂账户、申请注销账户(需余额为 0) 资金操作: 转账汇款:支持同行转账(输入对方账户号 / 手机号),需验证交易密码,可添加常用收款人 存款 / 取款:模拟存款(输入金额增加余额)、取款(输入金额减少余额,需不超过可用余额) 交易记录:按时间、类型(转入 / 转出 / 存款 / 取款)查询明细,显示交易时间、金额、对方账户(脱敏显示)、交易状态 3. 账单与支付模块 账单管理: 月度账单:自动生成每月收支明细,统计总收入、总支出、余额变动 账单查询:按月份、交易类型筛选账单,支持导出为 Excel 格式 还款提醒:若有贷款(简化版可模拟),系统在还款日 3 天前发送提醒 快捷支付: 绑定支付方式:添加银行卡(系统内账户)作为支付渠道 模拟消费:支持输入商户名称和金额,完成支付(从账户余额扣减) 支付记录:保存所有消费记录,包含商户、时间、金额、支付状态 4.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值