在阅读《Indirect Kalman Filter for 3D Attitude Estimation》一文时,发现文中对四元素的定义采用了非Hamilton方式,阅读有一些冲突,难以转换,至此,决定将该文章转换为Hamilton的表达形式。
1 四元素定义:
q=qw+qxi+qyj+qzk(1)
\bm{q} = q_w + q_x \bm{i} + q_y\bm{j} + q_z\bm{k} \qquad (1)
q=qw+qxi+qyj+qzk(1)
其中,虚数单位:i\bm{i}i,j\bm{j}j,k\bm{k}k满足如下关系:
i2=j2=k2=ijk=−1(2)
\bm{i}^2 = \bm{j}^2 = \bm{k}^2 = \bm{ijk} = -1\qquad(2)
i2=j2=k2=ijk=−1(2)
从而:
ij=−ji=k,jk=−kj=i,ki=−ik=j(3)
\bm{ij} = -\bm{ji} = \bm{k},\quad \bm{jk} = -\bm{kj} = \bm{i}, \quad \bm{ki} = -\bm{ik} = \bm{j} \qquad (3)
ij=−ji=k,jk=−kj=i,ki=−ik=j(3)
此外,四元数还可以表达成如下式所示的形式:
常量+向量形式:
q=qw+qv(4)
\bm{q} = q_w + \bm{q}_v \qquad(4)
q=qw+qv(4)
其中:qv=qxi+qyj+qzk\bm{q}_v = q_x \bm{i} + q_y\bm{j} + q_z\bm{k}qv=qxi+qyj+qzk
向量形式
q=[qwqv]=[qwqxqyqz](5)
\bm{q} = \begin{bmatrix}
q_w\\
\bm{q}_v
\end{bmatrix} = \begin{bmatrix}q_w\\ q_x \\ q_y \\ q_z \end{bmatrix} \qquad(5)
q=[qwqv]=qwqxqyqz(5)
2 四元素的主要性质
2.1 加法运算
q1±q2=[qw1qv1]±[qw2qv2]=[qw1±qw2qv1±qv2](6)
\bm{q}_1 \pm \bm{q}_2 = \begin{bmatrix}q_{w1} \\ \bm{q}_{v1} \end{bmatrix} \pm \begin{bmatrix}q_{w2} \\ \bm{q}_{v2} \end{bmatrix} = \begin{bmatrix}q_{w1} \pm q_{w2} \\ \bm{q}_{v1} \pm \bm{q}_{v2} \end{bmatrix} \qquad (6)
q1±q2=[qw1qv1]±[qw2qv2]=[qw1±qw2qv1±qv2](6)
加法运算满足交换律和结合律:
q1+q2=q2+q1(7)
\bm{q}_1 + \bm{q}_2 = \bm{q}_2 + \bm{q}_1 \qquad (7)
q1+q2=q2+q1(7)
q1+(q2+q3)=(q1+q2)+q3(8)
\bm{q}_1 + (\bm{q}_2 + \bm{q}_3) = (\bm{q}_1 + \bm{q}_2) + \bm{q}_3 \qquad(8)
q1+(q2+q3)=(q1+q2)+q3(8)
2.2 四元素数乘
kq=[kqwkqv]=[kqwkqxkqykqz](9)
k\bm{q} = \begin{bmatrix}
kq_w \\
k\bm{q}_v
\end{bmatrix} = \begin{bmatrix}
kq_w\\
kq_x\\
kq_y\\
kq_z
\end{bmatrix} \qquad (9)
kq=[kqwkqv]=kqwkqxkqykqz(9)
2.3 四元素点乘
点乘指的是两个四元素每个对应位置上的数值相乘再求和,即:
q⋅p=qwpw+qxpx+qypy+qzpz(10)
\bm{q} \cdot \bm{p} = q_w p_w + q_xp_x + q_yp_y + q_zp_z \qquad(10)
q⋅p=qwpw+qxpx+qypy+qzpz(10)
2.4 乘法运算⊗\otimes⊗
p⊗q=[pwqw−pxqx−pyqy−pzqzpwqx+pxqw+pyqz−pzqypwqy−pxqz+pyqw+pzqxpwqz+pxqy−pyqx+pzqw]=[pwqw−pv⊤qvpwqv+qwpv+pv×qv](11)
\bm{p} \otimes \bm{q} = \begin{bmatrix}
p_w q_w - p_x q_x - p_y q_y - p_z q_z \\
p_w q_x + p_x q_w + p_y q_z - p_z q_y \\
p_w q_y - p_x q_z + p_y q_w + p_z q_x \\
p_w q_z + p_xq_y - p_y q_x + p_z q_w
\end{bmatrix} = \begin{bmatrix}
p_w q_w - \bm{p}_v ^\top \bm{q}_v\\
p_w \bm{q}_v + q_w \bm{p}_v + \bm{p}_v \times\bm{q}_v
\end{bmatrix} \quad (11)
p⊗q=pwqw−pxqx−pyqy−pzqzpwqx+pxqw+pyqz−pzqypwqy−pxqz+pyqw+pzqxpwqz+pxqy−pyqx+pzqw=[pwqw−pv⊤qvpwqv+qwpv+pv×qv](11)
因(11)式中含有叉乘项,故四元素乘法不满足交换律,即:
p⊗q≠q⊗p(12)
\bm{p} \otimes \bm{q} \neq \bm{q} \otimes \bm{p} \qquad (12)
p⊗q=q⊗p(12)
例外:当pv×qv=0\bm{p}_v \times \bm{q}_v = 0pv×qv=0时,叉乘项为零时满足交换律,此时,pv=0\bm{p}_v=0pv=0 或qv=0\bm{q}_v=0qv=0 或 pv∣∣qv\bm{p}_v||\bm{q}_vpv∣∣qv(即两个向量平行)。
结合律:
(q1⊗q2)⊗q3=q1⊗(q2⊗q3)(13)
(\bm{q}_1 \otimes \bm{q}_2) \otimes \bm{q}_3 = \bm{q}_1 \otimes (\bm{q}_2 \otimes \bm{q}_3) \qquad(13)
(q1⊗q2)⊗q3=q1⊗(q2⊗q3)(13)
分配律:
q1⊗(q2+q3)=q1⊗q2+q1⊗q3(14)
\bm{q}_1 \otimes (\bm{q}_2 + \bm{q}_3) = \bm{q}_1 \otimes \bm{q}_2 + \bm{q}_1 \otimes \bm{q}_3 \qquad(14)
q1⊗(q2+q3)=q1⊗q2+q1⊗q3(14)
(q1+q2)⊗q3=q1⊗q3+q2⊗q3(15)
(\bm{q}_1 + \bm{q}_2) \otimes \bm{q}_3 = \bm{q}_1 \otimes \bm{q}_3 + \bm{q}_2 \otimes \bm{q}_3 \qquad(15)
(q1+q2)⊗q3=q1⊗q3+q2⊗q3(15)
矩阵乘法形式:
根据(11)式,提取出相应的四元素向量,便可以得到:
q1⊗q2=[q1]Lq2=[qw1−qx1−qy1−qz1qx1qw1−qz1qy1qy1qz1qw1−qx1qz1−qy1qx1qw1]q2(16)
\bm{q}_1 \otimes \bm{q}_2 = [\bm{q}_1]_L \bm{q}_2=\begin{bmatrix}
q_{w1} & -q_{x1} & -q_{y1} & -q_{z1} \\
q_{x1} & q_{w1} & -q_{z1} & q_{y1} \\
q_{y1} & q_{z1} & q_{w1} & -q_{x1} \\
q_{z1} & -q_{y1} & q_{x1} & q_{w1}
\end{bmatrix} \bm{q}_2 \qquad (16)
q1⊗q2=[q1]Lq2=qw1qx1qy1qz1−qx1qw1qz1−qy1−qy1−qz1qw1qx1−qz1qy1−qx1qw1q2(16)
q1⊗q2=[q2]Rq1=[qw2−qx2−qy2−qz2qx2qw2qz2−qy2qy2−qz2qw2qx2qz2qy2−qx2qw2]q1(17)
\bm{q}_1 \otimes \bm{q}_2 = [q_2]_R \bm{q}_1 = \begin{bmatrix}
q_{w2} & -q_{x2} & -q_{y2} & -q_{z2} \\
q_{x2} & q_{w2} & q_{z2} & -q_{y2} \\
q_{y2} & -q_{z2} & q_{w2} & q_{x2} \\
q_{z2} & q_{y2} & -q_{x2} & q_{w2}
\end{bmatrix} \bm{q}_1 \qquad (17)
q1⊗q2=[q2]Rq1=qw2qx2qy2qz2−qx2qw2−qz2qy2−qy2qz2qw2−qx2−qz2−qy2qx2qw2q1(17)
根据(16)和(17)可以得到:
[q]L=[qw−qx−qy−qzqxqw−qzqyqyqzqw−qxqz−qyqxqw],[q]R=[qw−qx−qy−qzqxqwqz−qyqy−qzqwqxqzqy−qxqw]q1(18)
[\bm{q}]_L = \begin{bmatrix}
q_{w} & -q_{x} & -q_{y} & -q_{z} \\
q_{x} & q_{w} & -q_{z} & q_{y} \\
q_{y} & q_{z} & q_{w} & -q_{x} \\
q_{z} & -q_{y} & q_{x} & q_{w}
\end{bmatrix}, \quad [\bm{q}]_R = \begin{bmatrix}
q_{w} & -q_{x} & -q_{y} & -q_{z} \\
q_{x} & q_{w} & q_{z} & -q_{y} \\
q_{y} & -q_{z} & q_{w} & q_{x} \\
q_{z} & q_{y} & -q_{x} & q_{w}
\end{bmatrix} \bm{q}_1 \qquad (18)
[q]L=qwqxqyqz−qxqwqz−qy−qy−qzqwqx−qzqy−qxqw,[q]R=qwqxqyqz−qxqw−qzqy−qyqzqw−qx−qz−qyqxqwq1(18)
进一步可以表示为:
[q]L=qwI+[0−qv⊤qvqv∧],[q]R=qwI+[0−qv⊤qv−qv∧](19)
[\bm{q}]_L = q_w \mathbf{I} + \begin{bmatrix}
0 & -\bm{q}_v^\top \\
\bm{q}_v & \bm{q}_v^\land
\end{bmatrix}, \qquad [\bm{q}]_R = q_w \mathbf{I} + \begin{bmatrix}
0 & -\bm{q}_v^\top \\
\bm{q}_v & -\bm{q}_v^\land
\end{bmatrix} \qquad (19)
[q]L=qwI+[0qv−qv⊤qv∧],[q]R=qwI+[0qv−qv⊤−qv∧](19)
其中:
q∧=[0−qzqyqz0−qx−qyqx0](20)
\bm{q} ^ \land = \begin{bmatrix}
0 & -q_z & q_y \\
q_z & 0 & -q_x \\
-q_y & q_x & 0
\end{bmatrix} \qquad (20)
q∧=0qz−qy−qz0qxqy−qx0(20)
是反对称矩阵,即q∧=−[q∧]⊤\bm{q}^\land = -[\bm{q}^\land]^\topq∧=−[q∧]⊤,可用于向量间的叉乘运算:
a×b=a∧b,∀a,b∈R3(21)
\bm{a} \times \bm{b} = \bm{a}^\land\bm{b}, \quad \forall \bm{a}, \bm{b} \in \mathbb{R}^3 \qquad (21)
a×b=a∧b,∀a,b∈R3(21)
因为:
(q⊗x)⊗p=[p]R[q]Lxandq⊗(x⊗p)=[q]L[p]Rx(22)
(\bm{q} \otimes \bm{x}) \otimes \bm{p} = [\bm{p}]_R[\bm{q}]_L\bm{x} \quad and \quad \bm{q} \otimes(\bm{x} \otimes \bm{p})=[\bm{q}]_L[\bm{p}]_R\bm{x} \qquad(22)
(q⊗x)⊗p=[p]R[q]Lxandq⊗(x⊗p)=[q]L[p]Rx(22)
从而,根据四元素乘法的结合律得:
[p]R[q]L=[q]L[p]R(23)
[\bm{p}]_R[\bm{q}]_L = [\bm{q}]_L[\bm{p}]_R \qquad (23)
[p]R[q]L=[q]L[p]R(23)
简化写法:
[q]L=[qΨ(q)](24)
[\bm{q}]_L = [\bm{q} \quad \mathbf{\Psi}(\bm{q})] \qquad(24)
[q]L=[qΨ(q)](24)
其中:
Ψ(q)=[−qv⊤qwI3×3+qv∧](25)
\mathbf{\Psi}(\bm{q}) = \begin{bmatrix}
-\bm{q}_v^\top \\
q_w\mathbf{I}_{3\times3} + \bm{q}_v^\land
\end{bmatrix} \qquad (25)
Ψ(q)=[−qv⊤qwI3×3+qv∧](25)
同理:
[q]R=[qΞ(q)](26)
[\bm{q}]_R = [\bm{q} \quad \mathbf{\Xi}(\bm{q})] \qquad(26)
[q]R=[qΞ(q)](26)
其中:
Ξ(q)=[−qv⊤qwI3×3−qv∧](27)
\mathbf{\Xi}(\bm{q}) = \begin{bmatrix}
-\bm{q}_v^\top \\
q_w\mathbf{I}_{3\times3} - \bm{q}_v^\land
\end{bmatrix} \qquad (27)
Ξ(q)=[−qv⊤qwI3×3−qv∧](27)
此外,对于unit quaternion q\bm{q}q有:
[q−1]L=[q]L⊤(28)
[\bm{q}^{-1}]_L = [\bm{q}]_L^\top \qquad (28)
[q−1]L=[q]L⊤(28)
[q−1]R=[q]R⊤(29)
[\bm{q}^{-1}]_R = [\bm{q}]_R^\top \qquad (29)
[q−1]R=[q]R⊤(29)
2.5 Identity quaternion
q1=1=[10v](30)
\bm{q}_1 = 1 = \begin{bmatrix}
1 \\
\bm{0}_v
\end{bmatrix} \qquad (30)
q1=1=[10v](30)
满足:
q1⊗q=q⊗q1=q(31)
\bm{q}_1 \otimes \bm{q} = \bm{q} \otimes \bm{q}_1 = \bm{q} \qquad(31)
q1⊗q=q⊗q1=q(31)
2.6 共轭
四元素的共轭为:
q∗=[qw−qv](32)
\bm{q}^* = \begin{bmatrix}
q_w\\
-\bm{q}_v
\end{bmatrix} \qquad(32)
q∗=[qw−qv](32)
共轭四元素的性质:
q⊗q∗=q∗⊗q=[qw2+qx2+qy2+qz20v](32)
\bm{q} \otimes \bm{q}^* = \bm{q}^* \otimes \bm{q} = \begin{bmatrix}
q_w^2 + q_x^2 + q_y^2 + q_z^2 \\
\bm{0}_v
\end{bmatrix} \qquad (32)
q⊗q∗=q∗⊗q=[qw2+qx2+qy2+qz20v](32)
以及:
(p⊗q)∗=q∗⊗p∗(33)
(\bm{p} \otimes \bm{q})^* = \bm{q}^* \otimes \bm{p}^* \qquad (33)
(p⊗q)∗=q∗⊗p∗(33)
2.7 四元素的模
定义:
∣∣q∣∣=q⊗q∗=q∗⊗q=qw2+qx2+qy2+qz2(34)
||\mathbf{q}|| = \sqrt{\mathbf{q} \otimes \mathbf{q}^*} = \sqrt{\mathbf{q}^* \otimes \mathbf{q}} = \sqrt{q_w^2 + q_x^2 + q_y^2 + q_z^2} \qquad (34)
∣∣q∣∣=q⊗q∗=q∗⊗q=qw2+qx2+qy2+qz2(34)
模的性质:
∣∣p⊗q∣∣=∣∣q⊗p∣∣=∣∣p∣∣∣∣q∣∣(35)
||\bm{p} \otimes \bm{q}|| = ||\bm{q} \otimes \bm{p}|| = ||\bm{p}|| ||\bm{q}|| \qquad (35)
∣∣p⊗q∣∣=∣∣q⊗p∣∣=∣∣p∣∣∣∣q∣∣(35)
简单推导:
∣∣p⊗q∣∣2=(p⊗q)⊗(p⊗q)∗=p⊗q⊗q∗⊗p∗=p⊗(q⊗q∗)⊗p∗=p⊗[∣∣q∣∣20v]⊗p∗=p⊗p∗⊗[∣∣q∣∣20v]=(∣∣p∣∣∣∣q∣∣)2
||\bm{p} \otimes \bm{q}||^2 = (\bm{p} \otimes \bm{q}) \otimes (\bm{p} \otimes\bm{q})^* = \bm{p} \otimes\bm{q}\otimes\bm{q}^*\otimes\bm{p}^* = \bm{p}\otimes(\bm{q}\otimes\bm{q}^*)\otimes\bm{p}^*=\bm{p} \otimes\begin{bmatrix}
||\bm{q}||^2 \\
\bm{0}_v
\end{bmatrix}
\otimes\bm{p}^* = \bm{p} \otimes \bm{p}^* \otimes \begin{bmatrix}
||\bm{q}||^2 \\
\bm{0}_v
\end{bmatrix} = (||\bm{p}||||\bm{q}||)^2
∣∣p⊗q∣∣2=(p⊗q)⊗(p⊗q)∗=p⊗q⊗q∗⊗p∗=p⊗(q⊗q∗)⊗p∗=p⊗[∣∣q∣∣20v]⊗p∗=p⊗p∗⊗[∣∣q∣∣20v]=(∣∣p∣∣∣∣q∣∣)2
2.8 四元素的逆
四元素的逆记为q−1\bm{q}^{-1}q−1,,其满足如下条件:
q⊗q−1=q−1⊗q=q1(36)
\bm{q} \otimes \bm{q}^{-1} = \bm{q}^{-1} \otimes \bm{q} = \bm{q}_1 \qquad(36)
q⊗q−1=q−1⊗q=q1(36)
其中q1\bm{q}_1q1为"Identity quaternion“, 逆通过下式计算:
q−1=q∗/∣∣q∣∣2(37)
\bm{q}^{-1} = \bm{q}^*/||\bm{q}||^2 \qquad (37)
q−1=q∗/∣∣q∣∣2(37)
2.9 Unit or normalized quaternion
对于unit quaternion有,∣∣q∣∣=1||\bm{q}|| = 1∣∣q∣∣=1,所以:
q−1=q∗(38)
\bm{q}^{-1} = \bm{q}^* \qquad(38)
q−1=q∗(38)
3 旋转四元素
形式:
q=[cos(θ/2)usin(θ/2)]=[cos(θ/2)uxsin(θ/2)uysin(θ/2)uzsin(θ/2)](39)
\bm{q} = \begin{bmatrix}
\cos (\theta / 2) \\
\bm{u} \sin (\theta/2)
\end{bmatrix} = \begin{bmatrix}
\cos (\theta/2) \\
u_x \sin (\theta/2) \\
u_y \sin (\theta/2) \\
u_z \sin (\theta/2)
\end{bmatrix} \qquad (39)
q=[cos(θ/2)usin(θ/2)]=cos(θ/2)uxsin(θ/2)uysin(θ/2)uzsin(θ/2)(39)
其中,旋转轴为u\bm{u}u,为单位向量,旋转角度为θ\thetaθ,将向量x\bm{x}x绕u\bm{u}u轴旋转θ\thetaθ即可表示为:
x′=q⊗x⊗q∗(40)
\bm{x}' = \bm{q} \otimes \bm{x} \otimes \bm{q}^* \qquad (40)
x′=q⊗x⊗q∗(40)
可以验证,旋转四元素为unit quaternion,跟unit quaternion一样 具有如下性质:
(p⊗q)−1=q−1⊗p−1(41)
(\bm{p} \otimes \bm{q})^{-1} = \bm{q}^{-1}\otimes\bm{p}^{-1} \qquad(41)
(p⊗q)−1=q−1⊗p−1(41)
在介绍四元素基本的定义及相关性质之后,将对《Indirect Kalman Filter for 3D Attitude Estimation》一文当中的相关内容进行转义。
》1.3 Userful Identites
》1.3.1 叉乘反对称矩阵的相关属性
Anti-Commutativity
w∧=−[w∧]⊤(42)
\bm{w}^\land = -[\bm{w}^\land]^\top \qquad(42)
w∧=−[w∧]⊤(42)
a∧b=−b∧a⇔−b⊤a∧=a⊤b∧(43)
\bm{a}^\land\bm{b} = -\bm{b}^\land\bm{a} \quad
\Leftrightarrow \quad -\bm{b}^\top \bm{a}^\land = \bm{a}^\top\bm{b}^\land \qquad (43)
a∧b=−b∧a⇔−b⊤a∧=a⊤b∧(43)
Distributivity orver Addition
a∧+b∧=(a+b)∧(44)
\bm{a}^\land + \bm{b}^\land = (\bm{a} + \bm{b})^\land \qquad(44)
a∧+b∧=(a+b)∧(44)
数乘
c⋅w∧=(cw)∧(45)
c \cdot \bm{w}^\land = (c\bm{w})^\land \qquad(45)
c⋅w∧=(cw)∧(45)
平行向量的叉乘
w×(cw)=c⋅w∧w=−c⋅(w⊤w∧)⊤=03×1(46)
\bm{w} \times (c\bm{w}) = c \cdot\bm{w}^\land\bm{w} = -c \cdot(\bm{w}^\top\bm{w}^\land)^\top = \bm{0}_{3\times1} \qquad(46)
w×(cw)=c⋅w∧w=−c⋅(w⊤w∧)⊤=03×1(46)
拉格朗日公式
a∧b∧=ba⊤−(a⊤b)I3×3(47)
\bm{a}^\land\bm{b}^\land=\bm{b}\bm{a}^\top-(\bm{a}^\top\bm{b})\mathbf{I}_{3\times3} \qquad (47)
a∧b∧=ba⊤−(a⊤b)I3×3(47)
⇔a×(b×c)=b(a⊤c)−c(a⊤b)(48)
\Leftrightarrow \bm{a} \times (\bm{b} \times \bm{c}) = \bm{b}(\bm{a}^\top\bm{c}) - \bm{c}(\bm{a}^\top\bm{b}) \qquad (48)
⇔a×(b×c)=b(a⊤c)−c(a⊤b)(48)
(a×b)∧=ba⊤−ab⊤(49) (\bm{a} \times \bm{b})^\land = \bm{b}\bm{a}^\top-\bm{a}\bm{b}^\top \qquad (49) (a×b)∧=ba⊤−ab⊤(49)
Jacobi Identity
a×(b×c)+b×(c×a)+c×(a×b)=0(49)
\bm{a} \times (\bm{b} \times \bm{c}) + \bm{b} \times (\bm{c} \times \bm{a}) + \bm{c} \times (\bm{a} \times \bm{b}) = \bm{0} \qquad (49)
a×(b×c)+b×(c×a)+c×(a×b)=0(49)
\qquador
a∧b∧c+b∧c∧a+c∧a∧b=0(50)
\bm{a}^\land\bm{b}^\land\bm{c} + \bm{b}^\land\bm{c}^\land\bm{a} + \bm{c}^\land\bm{a}^\land\bm{b}= \bm{0} \qquad(50)
a∧b∧c+b∧c∧a+c∧a∧b=0(50)
Rotations
(Ra)∧=Ra∧R⊤(51)proof.(Ra)×b=(Ra)×(RR⊤b)=R[a×(R⊤b)]=Ra∧R⊤b⇒(Ra)∧=Ra∧R⊤
(\bm{R}\bm{a})^\land = \bm{R}\bm{a}^\land\bm{R}^\top \qquad (51) \\
proof.\quad (\bm{Ra}) \times \bm{b} = (\bm{Ra}) \times (\bm{RR^\top b}) = \bm{R}[\bm{a} \times(\bm{R^\top b})]=\bm{R}\bm{a}^\land\bm{R}^\top\bm{b} \\
\Rightarrow (\bm{Ra})^\land = \bm{Ra}^\land\bm{R}^\top
(Ra)∧=Ra∧R⊤(51)proof.(Ra)×b=(Ra)×(RR⊤b)=R[a×(R⊤b)]=Ra∧R⊤b⇒(Ra)∧=Ra∧R⊤
R(a×b)=(Ra)×(Rb)(52)
\bm{R}(\bm{a} \times \bm{b}) = (\bm{R}\bm{a}) \times (\bm{R}\bm{b}) \qquad(52)
R(a×b)=(Ra)×(Rb)(52)
叉乘反对称矩阵
(w∧)2=ww⊤−∣w∣2I(53)
(\bm{w}^\land)^2 = \bm{ww}^\top - |\bm{w}|^2 \mathbf{I} \qquad(53)
(w∧)2=ww⊤−∣w∣2I(53)
(w∧)3=(ww⊤−∣w∣2I)w∧=ww⊤w∧−∣w∣2w∧=w(−w∧w)⊤−∣w∣2w∧=−∣w∣2w∧(54) \begin{aligned} (\bm{w}^\land)^3 & = (\bm{ww}^\top - |\bm{w}|^2\mathbf{I})\bm{w}^\land\\ & = \bm{w}\bm{w}^\top\bm{w}^\land-|\bm{w}|^2\bm{w}^\land\\ & =\bm{w}(-\bm{w}^\land\bm{w})^\top - |\bm{w}|^2\bm{w}^\land\\ & = -|\bm{w}|^2\bm{w}^\land \end{aligned} \qquad (54) (w∧)3=(ww⊤−∣w∣2I)w∧=ww⊤w∧−∣w∣2w∧=w(−w∧w)⊤−∣w∣2w∧=−∣w∣2w∧(54)
(w∧)4=(w∧)3w∧=−∣w∣2(w∧)2(55) \begin{aligned} (\bm{w}^\land)^4 & = (\bm{w}^\land)^3\bm{w}^\land\\ & = -|\bm{w}|^2(\bm{w}^\land)^2 \end{aligned} \qquad (55) (w∧)4=(w∧)3w∧=−∣w∣2(w∧)2(55)
(w∧)5=(w∧)4w∧=−∣w∣2(w∧)3=−∣w∣2(−∣w∣2w∧)=∣w∣4w∧(56) \begin{aligned} (\bm{w}^\land)^5 & = (\bm{w}^\land)^4\bm{w}^\land \\ &=-|\bm{w}|^2(\bm{w}^\land)^3\\ &=-|\bm{w}|^2(-|\bm{w}|^2\bm{w}^\land)\\ &=|\bm{w}|^4\bm{w}^\land \qquad (56) \end{aligned} (w∧)5=(w∧)4w∧=−∣w∣2(w∧)3=−∣w∣2(−∣w∣2w∧)=∣w∣4w∧(56)
(w∧)6=(w∧)5w∧=∣w∣4(w∧)2(57) \begin{aligned} (\bm{w}^\land)^6 & = (\bm{w}^\land)^5\bm{w}^\land\\ &= |\bm{w}|^4(\bm{w}^\land)^2 \qquad(57) \end{aligned} (w∧)6=(w∧)5w∧=∣w∣4(w∧)2(57)
(w∧)7=(w∧)6w∧=∣w∣4(w∧)3=∣w∣4(−∣w∣2w∧)=−∣w∣6w∧(58)...... \begin{aligned} (\bm{w}^\land)^7 &= (\bm{w}^\land)^6\bm{w}^\land\\ &=|\bm{w}|^4(\bm{w}^\land)^3\\ &=|\bm{w}|^4(-|\bm{w}|^2\bm{w}^\land)\\ &=-|\bm{w}|^6\bm{w}^\land \qquad(58)\\ &...... \end{aligned} (w∧)7=(w∧)6w∧=∣w∣4(w∧)3=∣w∣4(−∣w∣2w∧)=−∣w∣6w∧(58)......
》1.3.2 Properties of the matrix Ω\mathbf{\Omega}Ω
Ω\mathbf{\Omega}Ω矩阵出现在一个向量与四元素的乘积当中,可用于四元素的求导,它具有以下性质:
Ω(w)=[0−wx−wy−wzwx0wz−wywy−wz0wxwzwy−wx0]=[0−w⊤w−w∧](59)
\begin{aligned}
\mathbf{\Omega}(\bm{w}) &=\begin{bmatrix}
0 & -w_x & -w_y & -w_z\\
w_x & 0 & w_z & -w_y\\
w_y & -w_z& 0 & w_x \\
w_z & w_y & -w_x & 0
\end{bmatrix}\\
& = \begin{bmatrix}
0 & -\bm{w}^\top\\
\bm{w} & -\bm{w}^\land
\end{bmatrix}
\end{aligned} \qquad (59)
Ω(w)=0wxwywz−wx0−wzwy−wywz0−wx−wz−wywx0=[0w−w⊤−w∧](59)
Ω(w)2=[−w⊤ww⊤w∧−w∧w−ww⊤+w∧w∧]=[−∣∣w∣∣201×303×1−∣∣w∣∣2I3×3]=−∣∣w∣∣2I4×4(60) \begin{aligned} \mathbf{\Omega}(\bm{w})^2 & = \begin{bmatrix} -\bm{w}^\top\bm{w} & \bm{w}^\top\bm{w}^\land\\ -\bm{w}^\land\bm{w} & -\bm{ww}^\top+\bm{w}^\land\bm{w}^\land\\ \end{bmatrix}\\ &=\begin{bmatrix} -||\bm{w}||^2 & \mathbf{0}_{1\times3} \\ \mathbf{0}_{3\times1}& -||\bm{w}||^2\mathbf{I}_{3\times3} \end{bmatrix}\\ &=-||\bm{w}||^2\mathbf{I}_{4\times4} \qquad\qquad\qquad\qquad (60) \end{aligned} Ω(w)2=[−w⊤w−w∧ww⊤w∧−ww⊤+w∧w∧]=[−∣∣w∣∣203×101×3−∣∣w∣∣2I3×3]=−∣∣w∣∣2I4×4(60)
Ω(w)3=−∣∣w∣∣2Ω(w)(61) \mathbf{\Omega}(\bm{w})^3 = -||\bm{w}||^2\mathbf{\Omega}(\bm{w}) \qquad(61) Ω(w)3=−∣∣w∣∣2Ω(w)(61)
Ω(w)4=∣∣w∣∣4I4×4(62) \mathbf{\Omega}(\bm{w})^4 = ||\bm{w}||^4\mathbf{I}_{4\times4} \qquad(62) Ω(w)4=∣∣w∣∣4I4×4(62)
Ω(w)5=∣∣w∣∣4Ω(w)(63) \mathbf{\Omega}(\bm{w})^5 = ||\bm{w}||^4\mathbf{\Omega}(\bm{w}) \qquad(63) Ω(w)5=∣∣w∣∣4Ω(w)(63)
Ω(w)6=−∣∣w∣∣6I4×4(64) \mathbf{\Omega}(\bm{w})^6 = -||\bm{w}||^6\mathbf{I}_{4\times4} \qquad(64) Ω(w)6=−∣∣w∣∣6I4×4(64)
1.3.3 Properties of the matrix Ξ\mathbf{\Xi}Ξ
Ψ(q)=[−qv⊤qwI3×3+qv∧],Ψ⊤(q)=[−qvqwI3×3−qv∧](65) \mathbf{\Psi}(\bm{q}) = \begin{bmatrix} -\bm{q}_v^\top \\ q_w\mathbf{I}_{3\times3} + \bm{q}_v^\land \end{bmatrix}, \quad\mathbf{\Psi}^\top(\bm{q})=[-\bm{q}_v\quad q_w\mathbf{I}_{3\times3}-\bm{q}_v^\land] \qquad (65) Ψ(q)=[−qv⊤qwI3×3+qv∧],Ψ⊤(q)=[−qvqwI3×3−qv∧](65)
⇒Ψ⊤(q)Ψ(q)=∣∣q∣∣2I3×3(66)Ψ(q)Ψ⊤(q)=∣∣q∣∣I4×4−qq⊤(67)Ψ⊤(q)q=03×1(68) \begin{aligned} \Rightarrow \qquad \mathbf{\Psi}^\top(\bm{q})\mathbf{\Psi}(\bm{q}) & = ||\bm{q}||^2\mathbf{I}_{3\times3} \qquad(66)\\ \mathbf{\Psi}(\bm{q})\mathbf{\Psi}^\top(\bm{q}) &= ||\bm{q}||\mathbf{I}_{4\times4}-\bm{q}\bm{q}^\top\qquad(67)\\ \mathbf{\Psi}^\top(\bm{q})\bm{q}&=\mathbf{0}_{3\times1} \qquad (68) \end{aligned} ⇒Ψ⊤(q)Ψ(q)Ψ(q)Ψ⊤(q)Ψ⊤(q)q=∣∣q∣∣2I3×3(66)=∣∣q∣∣I4×4−qq⊤(67)=03×1(68)
Ξ\mathbf{\Xi}Ξ与Ω\mathbf{\Omega}Ω之间的关系为:
Ω(w)q=Ψ(q)w(69)
\mathbf{\Omega}(\bm{w})\bm{q}=\mathbf{\Psi}(\bm{q})\bm{w} \qquad(69)
Ω(w)q=Ψ(q)w(69)
》1.4 四元素与旋转矩阵之间的关系
给定旋转四元素q=cos(θ/2)+usin(θ/2)\bm{q}=\cos(\theta/2)+\bm{u}\sin(\theta/2)q=cos(θ/2)+usin(θ/2),对应的旋转矩阵记为R(q)\mathbf{R}(\bm{q})R(q),则
R(q)=(2qw2−1)I+2qvqv⊤+2qwqv∧(70)
\mathbf{R}(\bm{q})=(2q_w^2-1)\mathbf{I} + 2\bm{q}_v\bm{q}_v^\top + 2q_w\bm{q}_v^\land \qquad(70)
R(q)=(2qw2−1)I+2qvqv⊤+2qwqv∧(70)
其中:
qw=cos(θ/2),qv=usin(θ/2)
q_w = \cos(\theta/2), \quad\bm{q}_v=\bm{u}\sin(\theta/2)
qw=cos(θ/2),qv=usin(θ/2)
或者表示为:
R(q)=Ξ⊤(q)Ψ(q)(71)
\mathbf{R}(\bm{q})=\mathbf{\Xi}^\top(\bm{q})\mathbf{\Psi}(\bm{q}) \qquad(71)
R(q)=Ξ⊤(q)Ψ(q)(71)
或者表示为:
R(q)=[1−2qy2−2qz22qxqy−2qwqz2qxqz+2qwqy2qxqy+2qwqz1−2qx2−2qz22qyqz−2qwqx2qxqz−2qwqy2qyqz+2qwqx1−2qx2−2qy2](72)
\mathbf{R}(\bm{q}) = \begin{bmatrix}
1-2q_y^2-2q_z^2 & 2q_xq_y - 2q_wq_z & 2q_xq_z + 2q_wq_y \\
2q_xq_y+2q_wq_z & 1-2q_x^2-2q_z^2 & 2q_yq_z-2q_wq_x\\
2q_xq_z-2q_wq_y& 2q_yq_z+2q_wq_x& 1-2q_x^2-2q_y^2
\end{bmatrix} \qquad(72)
R(q)=1−2qy2−2qz22qxqy+2qwqz2qxqz−2qwqy2qxqy−2qwqz1−2qx2−2qz22qyqz+2qwqx2qxqz+2qwqy2qyqz−2qwqx1−2qx2−2qy2(72)
旋转矩阵的乘法与旋转四元素的乘法之间的关系:
R(0q1)R(1q2)=R(0q1⊗1q2)(73)
\mathbf{R}(\bm{^0q_1})\mathbf{R}(^1\bm{q}_2) = \mathbf{R}(^0\bm{q}_1 \otimes {^1}\bm{q}_2) \qquad(73)
R(0q1)R(1q2)=R(0q1⊗1q2)(73)
指数映射
R(q)=exp(θu∧)(74)
\mathbf{R}(\bm{q}) = exp(\theta\bm{u}^\land) \qquad (74)
R(q)=exp(θu∧)(74)
》1.5 四元素对时间的导数
待续。。。。。。
参考文献:
[1] Indirect Kalman Filter for 3D Attitude Estimation
[2] Quaternion kinematics for the error-state Kalman filter
[3] 视觉SLAM十四讲 从理论到实践
四元素与旋转表示

1万+





