四元素基础理论及其应用

四元素与旋转表示

在阅读《Indirect Kalman Filter for 3D Attitude Estimation》一文时,发现文中对四元素的定义采用了非Hamilton方式,阅读有一些冲突,难以转换,至此,决定将该文章转换为Hamilton的表达形式。

1 四元素定义:
q=qw+qxi+qyj+qzk(1) \bm{q} = q_w + q_x \bm{i} + q_y\bm{j} + q_z\bm{k} \qquad (1) q=qw+qxi+qyj+qzk(1)
其中,虚数单位:i\bm{i}ij\bm{j}jk\bm{k}k满足如下关系:
i2=j2=k2=ijk=−1(2) \bm{i}^2 = \bm{j}^2 = \bm{k}^2 = \bm{ijk} = -1\qquad(2) i2=j2=k2=ijk=1(2)
从而:
ij=−ji=k,jk=−kj=i,ki=−ik=j(3) \bm{ij} = -\bm{ji} = \bm{k},\quad \bm{jk} = -\bm{kj} = \bm{i}, \quad \bm{ki} = -\bm{ik} = \bm{j} \qquad (3) ij=ji=k,jk=kj=i,ki=ik=j(3)
此外,四元数还可以表达成如下式所示的形式:

常量+向量形式:
q=qw+qv(4) \bm{q} = q_w + \bm{q}_v \qquad(4) q=qw+qv(4)
其中:qv=qxi+qyj+qzk\bm{q}_v = q_x \bm{i} + q_y\bm{j} + q_z\bm{k}qv=qxi+qyj+qzk

向量形式
q=[qwqv]=[qwqxqyqz](5) \bm{q} = \begin{bmatrix} q_w\\ \bm{q}_v \end{bmatrix} = \begin{bmatrix}q_w\\ q_x \\ q_y \\ q_z \end{bmatrix} \qquad(5) q=[qwqv]=qwqxqyqz(5)

2 四元素的主要性质
2.1 加法运算
q1±q2=[qw1qv1]±[qw2qv2]=[qw1±qw2qv1±qv2](6) \bm{q}_1 \pm \bm{q}_2 = \begin{bmatrix}q_{w1} \\ \bm{q}_{v1} \end{bmatrix} \pm \begin{bmatrix}q_{w2} \\ \bm{q}_{v2} \end{bmatrix} = \begin{bmatrix}q_{w1} \pm q_{w2} \\ \bm{q}_{v1} \pm \bm{q}_{v2} \end{bmatrix} \qquad (6) q1±q2=[qw1qv1]±[qw2qv2]=[qw1±qw2qv1±qv2](6)
加法运算满足交换律和结合律:
q1+q2=q2+q1(7) \bm{q}_1 + \bm{q}_2 = \bm{q}_2 + \bm{q}_1 \qquad (7) q1+q2=q2+q1(7)
q1+(q2+q3)=(q1+q2)+q3(8) \bm{q}_1 + (\bm{q}_2 + \bm{q}_3) = (\bm{q}_1 + \bm{q}_2) + \bm{q}_3 \qquad(8) q1+(q2+q3)=(q1+q2)+q3(8)

2.2 四元素数乘
kq=[kqwkqv]=[kqwkqxkqykqz](9) k\bm{q} = \begin{bmatrix} kq_w \\ k\bm{q}_v \end{bmatrix} = \begin{bmatrix} kq_w\\ kq_x\\ kq_y\\ kq_z \end{bmatrix} \qquad (9) kq=[kqwkqv]=kqwkqxkqykqz(9)

2.3 四元素点乘
点乘指的是两个四元素每个对应位置上的数值相乘再求和,即:
q⋅p=qwpw+qxpx+qypy+qzpz(10) \bm{q} \cdot \bm{p} = q_w p_w + q_xp_x + q_yp_y + q_zp_z \qquad(10) qp=qwpw+qxpx+qypy+qzpz(10)

2.4 乘法运算⊗\otimes
p⊗q=[pwqw−pxqx−pyqy−pzqzpwqx+pxqw+pyqz−pzqypwqy−pxqz+pyqw+pzqxpwqz+pxqy−pyqx+pzqw]=[pwqw−pv⊤qvpwqv+qwpv+pv×qv](11) \bm{p} \otimes \bm{q} = \begin{bmatrix} p_w q_w - p_x q_x - p_y q_y - p_z q_z \\ p_w q_x + p_x q_w + p_y q_z - p_z q_y \\ p_w q_y - p_x q_z + p_y q_w + p_z q_x \\ p_w q_z + p_xq_y - p_y q_x + p_z q_w \end{bmatrix} = \begin{bmatrix} p_w q_w - \bm{p}_v ^\top \bm{q}_v\\ p_w \bm{q}_v + q_w \bm{p}_v + \bm{p}_v \times\bm{q}_v \end{bmatrix} \quad (11) pq=pwqwpxqxpyqypzqzpwqx+pxqw+pyqzpzqypwqypxqz+pyqw+pzqxpwqz+pxqypyqx+pzqw=[pwqwpvqvpwqv+qwpv+pv×qv](11)
因(11)式中含有叉乘项,故四元素乘法不满足交换律,即:
p⊗q≠q⊗p(12) \bm{p} \otimes \bm{q} \neq \bm{q} \otimes \bm{p} \qquad (12) pq=qp(12)
例外:当pv×qv=0\bm{p}_v \times \bm{q}_v = 0pv×qv=0时,叉乘项为零时满足交换律,此时,pv=0\bm{p}_v=0pv=0qv=0\bm{q}_v=0qv=0pv∣∣qv\bm{p}_v||\bm{q}_vpv∣∣qv(即两个向量平行)。

结合律:
(q1⊗q2)⊗q3=q1⊗(q2⊗q3)(13) (\bm{q}_1 \otimes \bm{q}_2) \otimes \bm{q}_3 = \bm{q}_1 \otimes (\bm{q}_2 \otimes \bm{q}_3) \qquad(13) (q1q2)q3=q1(q2q3)(13)

分配律:
q1⊗(q2+q3)=q1⊗q2+q1⊗q3(14) \bm{q}_1 \otimes (\bm{q}_2 + \bm{q}_3) = \bm{q}_1 \otimes \bm{q}_2 + \bm{q}_1 \otimes \bm{q}_3 \qquad(14) q1(q2+q3)=q1q2+q1q3(14)
(q1+q2)⊗q3=q1⊗q3+q2⊗q3(15) (\bm{q}_1 + \bm{q}_2) \otimes \bm{q}_3 = \bm{q}_1 \otimes \bm{q}_3 + \bm{q}_2 \otimes \bm{q}_3 \qquad(15) (q1+q2)q3=q1q3+q2q3(15)

矩阵乘法形式:
根据(11)式,提取出相应的四元素向量,便可以得到:
q1⊗q2=[q1]Lq2=[qw1−qx1−qy1−qz1qx1qw1−qz1qy1qy1qz1qw1−qx1qz1−qy1qx1qw1]q2(16) \bm{q}_1 \otimes \bm{q}_2 = [\bm{q}_1]_L \bm{q}_2=\begin{bmatrix} q_{w1} & -q_{x1} & -q_{y1} & -q_{z1} \\ q_{x1} & q_{w1} & -q_{z1} & q_{y1} \\ q_{y1} & q_{z1} & q_{w1} & -q_{x1} \\ q_{z1} & -q_{y1} & q_{x1} & q_{w1} \end{bmatrix} \bm{q}_2 \qquad (16) q1q2=[q1]Lq2=qw1qx1qy1qz1qx1qw1qz1qy1qy1qz1qw1qx1qz1qy1qx1qw1q2(16)
q1⊗q2=[q2]Rq1=[qw2−qx2−qy2−qz2qx2qw2qz2−qy2qy2−qz2qw2qx2qz2qy2−qx2qw2]q1(17) \bm{q}_1 \otimes \bm{q}_2 = [q_2]_R \bm{q}_1 = \begin{bmatrix} q_{w2} & -q_{x2} & -q_{y2} & -q_{z2} \\ q_{x2} & q_{w2} & q_{z2} & -q_{y2} \\ q_{y2} & -q_{z2} & q_{w2} & q_{x2} \\ q_{z2} & q_{y2} & -q_{x2} & q_{w2} \end{bmatrix} \bm{q}_1 \qquad (17) q1q2=[q2]Rq1=qw2qx2qy2qz2qx2qw2qz2qy2qy2qz2qw2qx2qz2qy2qx2qw2q1(17)
根据(16)和(17)可以得到:
[q]L=[qw−qx−qy−qzqxqw−qzqyqyqzqw−qxqz−qyqxqw],[q]R=[qw−qx−qy−qzqxqwqz−qyqy−qzqwqxqzqy−qxqw]q1(18) [\bm{q}]_L = \begin{bmatrix} q_{w} & -q_{x} & -q_{y} & -q_{z} \\ q_{x} & q_{w} & -q_{z} & q_{y} \\ q_{y} & q_{z} & q_{w} & -q_{x} \\ q_{z} & -q_{y} & q_{x} & q_{w} \end{bmatrix}, \quad [\bm{q}]_R = \begin{bmatrix} q_{w} & -q_{x} & -q_{y} & -q_{z} \\ q_{x} & q_{w} & q_{z} & -q_{y} \\ q_{y} & -q_{z} & q_{w} & q_{x} \\ q_{z} & q_{y} & -q_{x} & q_{w} \end{bmatrix} \bm{q}_1 \qquad (18) [q]L=qwqxqyqzqxqwqzqyqyqzqwqxqzqyqxqw,[q]R=qwqxqyqzqxqwqzqyqyqzqwqxqzqyqxqwq1(18)
进一步可以表示为:
[q]L=qwI+[0−qv⊤qvqv∧],[q]R=qwI+[0−qv⊤qv−qv∧](19) [\bm{q}]_L = q_w \mathbf{I} + \begin{bmatrix} 0 & -\bm{q}_v^\top \\ \bm{q}_v & \bm{q}_v^\land \end{bmatrix}, \qquad [\bm{q}]_R = q_w \mathbf{I} + \begin{bmatrix} 0 & -\bm{q}_v^\top \\ \bm{q}_v & -\bm{q}_v^\land \end{bmatrix} \qquad (19) [q]L=qwI+[0qvqvqv],[q]R=qwI+[0qvqvqv](19)
其中:
q∧=[0−qzqyqz0−qx−qyqx0](20) \bm{q} ^ \land = \begin{bmatrix} 0 & -q_z & q_y \\ q_z & 0 & -q_x \\ -q_y & q_x & 0 \end{bmatrix} \qquad (20) q=0qzqyqz0qxqyqx0(20)
是反对称矩阵,即q∧=−[q∧]⊤\bm{q}^\land = -[\bm{q}^\land]^\topq=[q],可用于向量间的叉乘运算:
a×b=a∧b,∀a,b∈R3(21) \bm{a} \times \bm{b} = \bm{a}^\land\bm{b}, \quad \forall \bm{a}, \bm{b} \in \mathbb{R}^3 \qquad (21) a×b=ab,a,bR3(21)

因为:
(q⊗x)⊗p=[p]R[q]Lxandq⊗(x⊗p)=[q]L[p]Rx(22) (\bm{q} \otimes \bm{x}) \otimes \bm{p} = [\bm{p}]_R[\bm{q}]_L\bm{x} \quad and \quad \bm{q} \otimes(\bm{x} \otimes \bm{p})=[\bm{q}]_L[\bm{p}]_R\bm{x} \qquad(22) (qx)p=[p]R[q]Lxandq(xp)=[q]L[p]Rx(22)
从而,根据四元素乘法的结合律得:
[p]R[q]L=[q]L[p]R(23) [\bm{p}]_R[\bm{q}]_L = [\bm{q}]_L[\bm{p}]_R \qquad (23) [p]R[q]L=[q]L[p]R(23)

简化写法:
[q]L=[qΨ(q)](24) [\bm{q}]_L = [\bm{q} \quad \mathbf{\Psi}(\bm{q})] \qquad(24) [q]L=[qΨ(q)](24)
其中:
Ψ(q)=[−qv⊤qwI3×3+qv∧](25) \mathbf{\Psi}(\bm{q}) = \begin{bmatrix} -\bm{q}_v^\top \\ q_w\mathbf{I}_{3\times3} + \bm{q}_v^\land \end{bmatrix} \qquad (25) Ψ(q)=[qvqwI3×3+qv](25)
同理:
[q]R=[qΞ(q)](26) [\bm{q}]_R = [\bm{q} \quad \mathbf{\Xi}(\bm{q})] \qquad(26) [q]R=[qΞ(q)](26)
其中:
Ξ(q)=[−qv⊤qwI3×3−qv∧](27) \mathbf{\Xi}(\bm{q}) = \begin{bmatrix} -\bm{q}_v^\top \\ q_w\mathbf{I}_{3\times3} - \bm{q}_v^\land \end{bmatrix} \qquad (27) Ξ(q)=[qvqwI3×3qv](27)

此外,对于unit quaternion q\bm{q}q有:
[q−1]L=[q]L⊤(28) [\bm{q}^{-1}]_L = [\bm{q}]_L^\top \qquad (28) [q1]L=[q]L(28)
[q−1]R=[q]R⊤(29) [\bm{q}^{-1}]_R = [\bm{q}]_R^\top \qquad (29) [q1]R=[q]R(29)

2.5 Identity quaternion
q1=1=[10v](30) \bm{q}_1 = 1 = \begin{bmatrix} 1 \\ \bm{0}_v \end{bmatrix} \qquad (30) q1=1=[10v](30)
满足:
q1⊗q=q⊗q1=q(31) \bm{q}_1 \otimes \bm{q} = \bm{q} \otimes \bm{q}_1 = \bm{q} \qquad(31) q1q=qq1=q(31)

2.6 共轭
四元素的共轭为:
q∗=[qw−qv](32) \bm{q}^* = \begin{bmatrix} q_w\\ -\bm{q}_v \end{bmatrix} \qquad(32) q=[qwqv](32)
共轭四元素的性质:
q⊗q∗=q∗⊗q=[qw2+qx2+qy2+qz20v](32) \bm{q} \otimes \bm{q}^* = \bm{q}^* \otimes \bm{q} = \begin{bmatrix} q_w^2 + q_x^2 + q_y^2 + q_z^2 \\ \bm{0}_v \end{bmatrix} \qquad (32) qq=qq=[qw2+qx2+qy2+qz20v](32)

以及:
(p⊗q)∗=q∗⊗p∗(33) (\bm{p} \otimes \bm{q})^* = \bm{q}^* \otimes \bm{p}^* \qquad (33) (pq)=qp(33)

2.7 四元素的模
定义:
∣∣q∣∣=q⊗q∗=q∗⊗q=qw2+qx2+qy2+qz2(34) ||\mathbf{q}|| = \sqrt{\mathbf{q} \otimes \mathbf{q}^*} = \sqrt{\mathbf{q}^* \otimes \mathbf{q}} = \sqrt{q_w^2 + q_x^2 + q_y^2 + q_z^2} \qquad (34) ∣∣q∣∣=qq=qq=qw2+qx2+qy2+qz2(34)

模的性质:
∣∣p⊗q∣∣=∣∣q⊗p∣∣=∣∣p∣∣∣∣q∣∣(35) ||\bm{p} \otimes \bm{q}|| = ||\bm{q} \otimes \bm{p}|| = ||\bm{p}|| ||\bm{q}|| \qquad (35) ∣∣pq∣∣=∣∣qp∣∣=∣∣p∣∣∣∣q∣∣(35)
简单推导:
∣∣p⊗q∣∣2=(p⊗q)⊗(p⊗q)∗=p⊗q⊗q∗⊗p∗=p⊗(q⊗q∗)⊗p∗=p⊗[∣∣q∣∣20v]⊗p∗=p⊗p∗⊗[∣∣q∣∣20v]=(∣∣p∣∣∣∣q∣∣)2 ||\bm{p} \otimes \bm{q}||^2 = (\bm{p} \otimes \bm{q}) \otimes (\bm{p} \otimes\bm{q})^* = \bm{p} \otimes\bm{q}\otimes\bm{q}^*\otimes\bm{p}^* = \bm{p}\otimes(\bm{q}\otimes\bm{q}^*)\otimes\bm{p}^*=\bm{p} \otimes\begin{bmatrix} ||\bm{q}||^2 \\ \bm{0}_v \end{bmatrix} \otimes\bm{p}^* = \bm{p} \otimes \bm{p}^* \otimes \begin{bmatrix} ||\bm{q}||^2 \\ \bm{0}_v \end{bmatrix} = (||\bm{p}||||\bm{q}||)^2 ∣∣pq2=(pq)(pq)=pqqp=p(qq)p=p[∣∣q20v]p=pp[∣∣q20v]=(∣∣p∣∣∣∣q∣∣)2

2.8 四元素的逆
四元素的逆记为q−1\bm{q}^{-1}q1,,其满足如下条件:
q⊗q−1=q−1⊗q=q1(36) \bm{q} \otimes \bm{q}^{-1} = \bm{q}^{-1} \otimes \bm{q} = \bm{q}_1 \qquad(36) qq1=q1q=q1(36)
其中q1\bm{q}_1q1为"Identity quaternion“, 逆通过下式计算:
q−1=q∗/∣∣q∣∣2(37) \bm{q}^{-1} = \bm{q}^*/||\bm{q}||^2 \qquad (37) q1=q/∣∣q2(37)

2.9 Unit or normalized quaternion
对于unit quaternion有,∣∣q∣∣=1||\bm{q}|| = 1∣∣q∣∣=1,所以:
q−1=q∗(38) \bm{q}^{-1} = \bm{q}^* \qquad(38) q1=q(38)

3 旋转四元素
形式:
q=[cos⁡(θ/2)usin⁡(θ/2)]=[cos⁡(θ/2)uxsin⁡(θ/2)uysin⁡(θ/2)uzsin⁡(θ/2)](39) \bm{q} = \begin{bmatrix} \cos (\theta / 2) \\ \bm{u} \sin (\theta/2) \end{bmatrix} = \begin{bmatrix} \cos (\theta/2) \\ u_x \sin (\theta/2) \\ u_y \sin (\theta/2) \\ u_z \sin (\theta/2) \end{bmatrix} \qquad (39) q=[cos(θ/2)usin(θ/2)]=cos(θ/2)uxsin(θ/2)uysin(θ/2)uzsin(θ/2)(39)
其中,旋转轴为u\bm{u}u,为单位向量,旋转角度为θ\thetaθ,将向量x\bm{x}xu\bm{u}u轴旋转θ\thetaθ即可表示为:
x′=q⊗x⊗q∗(40) \bm{x}' = \bm{q} \otimes \bm{x} \otimes \bm{q}^* \qquad (40) x=qxq(40)
可以验证,旋转四元素为unit quaternion,跟unit quaternion一样 具有如下性质:
(p⊗q)−1=q−1⊗p−1(41) (\bm{p} \otimes \bm{q})^{-1} = \bm{q}^{-1}\otimes\bm{p}^{-1} \qquad(41) (pq)1=q1p1(41)

在介绍四元素基本的定义及相关性质之后,将对《Indirect Kalman Filter for 3D Attitude Estimation》一文当中的相关内容进行转义。

》1.3 Userful Identites
》1.3.1 叉乘反对称矩阵的相关属性
Anti-Commutativity
w∧=−[w∧]⊤(42) \bm{w}^\land = -[\bm{w}^\land]^\top \qquad(42) w=[w](42)
a∧b=−b∧a⇔−b⊤a∧=a⊤b∧(43) \bm{a}^\land\bm{b} = -\bm{b}^\land\bm{a} \quad \Leftrightarrow \quad -\bm{b}^\top \bm{a}^\land = \bm{a}^\top\bm{b}^\land \qquad (43) ab=baba=ab(43)

Distributivity orver Addition
a∧+b∧=(a+b)∧(44) \bm{a}^\land + \bm{b}^\land = (\bm{a} + \bm{b})^\land \qquad(44) a+b=(a+b)(44)

数乘
c⋅w∧=(cw)∧(45) c \cdot \bm{w}^\land = (c\bm{w})^\land \qquad(45) cw=(cw)(45)

平行向量的叉乘
w×(cw)=c⋅w∧w=−c⋅(w⊤w∧)⊤=03×1(46) \bm{w} \times (c\bm{w}) = c \cdot\bm{w}^\land\bm{w} = -c \cdot(\bm{w}^\top\bm{w}^\land)^\top = \bm{0}_{3\times1} \qquad(46) w×(cw)=cww=c(ww)=03×1(46)

拉格朗日公式
a∧b∧=ba⊤−(a⊤b)I3×3(47) \bm{a}^\land\bm{b}^\land=\bm{b}\bm{a}^\top-(\bm{a}^\top\bm{b})\mathbf{I}_{3\times3} \qquad (47) ab=ba(ab)I3×3(47)
⇔a×(b×c)=b(a⊤c)−c(a⊤b)(48) \Leftrightarrow \bm{a} \times (\bm{b} \times \bm{c}) = \bm{b}(\bm{a}^\top\bm{c}) - \bm{c}(\bm{a}^\top\bm{b}) \qquad (48) a×(b×c)=b(ac)c(ab)(48)

(a×b)∧=ba⊤−ab⊤(49) (\bm{a} \times \bm{b})^\land = \bm{b}\bm{a}^\top-\bm{a}\bm{b}^\top \qquad (49) (a×b)=baab(49)

Jacobi Identity
a×(b×c)+b×(c×a)+c×(a×b)=0(49) \bm{a} \times (\bm{b} \times \bm{c}) + \bm{b} \times (\bm{c} \times \bm{a}) + \bm{c} \times (\bm{a} \times \bm{b}) = \bm{0} \qquad (49) a×(b×c)+b×(c×a)+c×(a×b)=0(49)
\qquador
a∧b∧c+b∧c∧a+c∧a∧b=0(50) \bm{a}^\land\bm{b}^\land\bm{c} + \bm{b}^\land\bm{c}^\land\bm{a} + \bm{c}^\land\bm{a}^\land\bm{b}= \bm{0} \qquad(50) abc+bca+cab=0(50)

Rotations
(Ra)∧=Ra∧R⊤(51)proof.(Ra)×b=(Ra)×(RR⊤b)=R[a×(R⊤b)]=Ra∧R⊤b⇒(Ra)∧=Ra∧R⊤ (\bm{R}\bm{a})^\land = \bm{R}\bm{a}^\land\bm{R}^\top \qquad (51) \\ proof.\quad (\bm{Ra}) \times \bm{b} = (\bm{Ra}) \times (\bm{RR^\top b}) = \bm{R}[\bm{a} \times(\bm{R^\top b})]=\bm{R}\bm{a}^\land\bm{R}^\top\bm{b} \\ \Rightarrow (\bm{Ra})^\land = \bm{Ra}^\land\bm{R}^\top (Ra)=RaR(51)proof.(Ra)×b=(Ra)×(RRb)=R[a×(Rb)]=RaRb(Ra)=RaR
R(a×b)=(Ra)×(Rb)(52) \bm{R}(\bm{a} \times \bm{b}) = (\bm{R}\bm{a}) \times (\bm{R}\bm{b}) \qquad(52) R(a×b)=(Ra)×(Rb)(52)

叉乘反对称矩阵
(w∧)2=ww⊤−∣w∣2I(53) (\bm{w}^\land)^2 = \bm{ww}^\top - |\bm{w}|^2 \mathbf{I} \qquad(53) (w)2=www2I(53)

(w∧)3=(ww⊤−∣w∣2I)w∧=ww⊤w∧−∣w∣2w∧=w(−w∧w)⊤−∣w∣2w∧=−∣w∣2w∧(54) \begin{aligned} (\bm{w}^\land)^3 & = (\bm{ww}^\top - |\bm{w}|^2\mathbf{I})\bm{w}^\land\\ & = \bm{w}\bm{w}^\top\bm{w}^\land-|\bm{w}|^2\bm{w}^\land\\ & =\bm{w}(-\bm{w}^\land\bm{w})^\top - |\bm{w}|^2\bm{w}^\land\\ & = -|\bm{w}|^2\bm{w}^\land \end{aligned} \qquad (54) (w)3=(www2I)w=wwww2w=w(ww)w2w=w2w(54)

(w∧)4=(w∧)3w∧=−∣w∣2(w∧)2(55) \begin{aligned} (\bm{w}^\land)^4 & = (\bm{w}^\land)^3\bm{w}^\land\\ & = -|\bm{w}|^2(\bm{w}^\land)^2 \end{aligned} \qquad (55) (w)4=(w)3w=w2(w)2(55)

(w∧)5=(w∧)4w∧=−∣w∣2(w∧)3=−∣w∣2(−∣w∣2w∧)=∣w∣4w∧(56) \begin{aligned} (\bm{w}^\land)^5 & = (\bm{w}^\land)^4\bm{w}^\land \\ &=-|\bm{w}|^2(\bm{w}^\land)^3\\ &=-|\bm{w}|^2(-|\bm{w}|^2\bm{w}^\land)\\ &=|\bm{w}|^4\bm{w}^\land \qquad (56) \end{aligned} (w)5=(w)4w=w2(w)3=w2(w2w)=w4w(56)

(w∧)6=(w∧)5w∧=∣w∣4(w∧)2(57) \begin{aligned} (\bm{w}^\land)^6 & = (\bm{w}^\land)^5\bm{w}^\land\\ &= |\bm{w}|^4(\bm{w}^\land)^2 \qquad(57) \end{aligned} (w)6=(w)5w=w4(w)2(57)

(w∧)7=(w∧)6w∧=∣w∣4(w∧)3=∣w∣4(−∣w∣2w∧)=−∣w∣6w∧(58)...... \begin{aligned} (\bm{w}^\land)^7 &= (\bm{w}^\land)^6\bm{w}^\land\\ &=|\bm{w}|^4(\bm{w}^\land)^3\\ &=|\bm{w}|^4(-|\bm{w}|^2\bm{w}^\land)\\ &=-|\bm{w}|^6\bm{w}^\land \qquad(58)\\ &...... \end{aligned} (w)7=(w)6w=w4(w)3=w4(w2w)=w6w(58)......

》1.3.2 Properties of the matrix Ω\mathbf{\Omega}Ω
Ω\mathbf{\Omega}Ω矩阵出现在一个向量与四元素的乘积当中,可用于四元素的求导,它具有以下性质:
Ω(w)=[0−wx−wy−wzwx0wz−wywy−wz0wxwzwy−wx0]=[0−w⊤w−w∧](59) \begin{aligned} \mathbf{\Omega}(\bm{w}) &=\begin{bmatrix} 0 & -w_x & -w_y & -w_z\\ w_x & 0 & w_z & -w_y\\ w_y & -w_z& 0 & w_x \\ w_z & w_y & -w_x & 0 \end{bmatrix}\\ & = \begin{bmatrix} 0 & -\bm{w}^\top\\ \bm{w} & -\bm{w}^\land \end{bmatrix} \end{aligned} \qquad (59) Ω(w)=0wxwywzwx0wzwywywz0wxwzwywx0=[0www](59)

Ω(w)2=[−w⊤ww⊤w∧−w∧w−ww⊤+w∧w∧]=[−∣∣w∣∣201×303×1−∣∣w∣∣2I3×3]=−∣∣w∣∣2I4×4(60) \begin{aligned} \mathbf{\Omega}(\bm{w})^2 & = \begin{bmatrix} -\bm{w}^\top\bm{w} & \bm{w}^\top\bm{w}^\land\\ -\bm{w}^\land\bm{w} & -\bm{ww}^\top+\bm{w}^\land\bm{w}^\land\\ \end{bmatrix}\\ &=\begin{bmatrix} -||\bm{w}||^2 & \mathbf{0}_{1\times3} \\ \mathbf{0}_{3\times1}& -||\bm{w}||^2\mathbf{I}_{3\times3} \end{bmatrix}\\ &=-||\bm{w}||^2\mathbf{I}_{4\times4} \qquad\qquad\qquad\qquad (60) \end{aligned} Ω(w)2=[wwwwwwww+ww]=[∣∣w203×101×3∣∣w2I3×3]=∣∣w2I4×4(60)

Ω(w)3=−∣∣w∣∣2Ω(w)(61) \mathbf{\Omega}(\bm{w})^3 = -||\bm{w}||^2\mathbf{\Omega}(\bm{w}) \qquad(61) Ω(w)3=∣∣w2Ω(w)(61)

Ω(w)4=∣∣w∣∣4I4×4(62) \mathbf{\Omega}(\bm{w})^4 = ||\bm{w}||^4\mathbf{I}_{4\times4} \qquad(62) Ω(w)4=∣∣w4I4×4(62)

Ω(w)5=∣∣w∣∣4Ω(w)(63) \mathbf{\Omega}(\bm{w})^5 = ||\bm{w}||^4\mathbf{\Omega}(\bm{w}) \qquad(63) Ω(w)5=∣∣w4Ω(w)(63)

Ω(w)6=−∣∣w∣∣6I4×4(64) \mathbf{\Omega}(\bm{w})^6 = -||\bm{w}||^6\mathbf{I}_{4\times4} \qquad(64) Ω(w)6=∣∣w6I4×4(64)

1.3.3 Properties of the matrix Ξ\mathbf{\Xi}Ξ

Ψ(q)=[−qv⊤qwI3×3+qv∧],Ψ⊤(q)=[−qvqwI3×3−qv∧](65) \mathbf{\Psi}(\bm{q}) = \begin{bmatrix} -\bm{q}_v^\top \\ q_w\mathbf{I}_{3\times3} + \bm{q}_v^\land \end{bmatrix}, \quad\mathbf{\Psi}^\top(\bm{q})=[-\bm{q}_v\quad q_w\mathbf{I}_{3\times3}-\bm{q}_v^\land] \qquad (65) Ψ(q)=[qvqwI3×3+qv],Ψ(q)=[qvqwI3×3qv](65)

⇒Ψ⊤(q)Ψ(q)=∣∣q∣∣2I3×3(66)Ψ(q)Ψ⊤(q)=∣∣q∣∣I4×4−qq⊤(67)Ψ⊤(q)q=03×1(68) \begin{aligned} \Rightarrow \qquad \mathbf{\Psi}^\top(\bm{q})\mathbf{\Psi}(\bm{q}) & = ||\bm{q}||^2\mathbf{I}_{3\times3} \qquad(66)\\ \mathbf{\Psi}(\bm{q})\mathbf{\Psi}^\top(\bm{q}) &= ||\bm{q}||\mathbf{I}_{4\times4}-\bm{q}\bm{q}^\top\qquad(67)\\ \mathbf{\Psi}^\top(\bm{q})\bm{q}&=\mathbf{0}_{3\times1} \qquad (68) \end{aligned} Ψ(q)Ψ(q)Ψ(q)Ψ(q)Ψ(q)q=∣∣q2I3×3(66)=∣∣q∣∣I4×4qq(67)=03×1(68)

Ξ\mathbf{\Xi}ΞΩ\mathbf{\Omega}Ω之间的关系为:
Ω(w)q=Ψ(q)w(69) \mathbf{\Omega}(\bm{w})\bm{q}=\mathbf{\Psi}(\bm{q})\bm{w} \qquad(69) Ω(w)q=Ψ(q)w(69)

》1.4 四元素与旋转矩阵之间的关系
给定旋转四元素q=cos⁡(θ/2)+usin⁡(θ/2)\bm{q}=\cos(\theta/2)+\bm{u}\sin(\theta/2)q=cos(θ/2)+usin(θ/2),对应的旋转矩阵记为R(q)\mathbf{R}(\bm{q})R(q),则
R(q)=(2qw2−1)I+2qvqv⊤+2qwqv∧(70) \mathbf{R}(\bm{q})=(2q_w^2-1)\mathbf{I} + 2\bm{q}_v\bm{q}_v^\top + 2q_w\bm{q}_v^\land \qquad(70) R(q)=(2qw21)I+2qvqv+2qwqv(70)
其中:
qw=cos⁡(θ/2),qv=usin⁡(θ/2) q_w = \cos(\theta/2), \quad\bm{q}_v=\bm{u}\sin(\theta/2) qw=cos(θ/2),qv=usin(θ/2)
或者表示为:
R(q)=Ξ⊤(q)Ψ(q)(71) \mathbf{R}(\bm{q})=\mathbf{\Xi}^\top(\bm{q})\mathbf{\Psi}(\bm{q}) \qquad(71) R(q)=Ξ(q)Ψ(q)(71)

或者表示为:
R(q)=[1−2qy2−2qz22qxqy−2qwqz2qxqz+2qwqy2qxqy+2qwqz1−2qx2−2qz22qyqz−2qwqx2qxqz−2qwqy2qyqz+2qwqx1−2qx2−2qy2](72) \mathbf{R}(\bm{q}) = \begin{bmatrix} 1-2q_y^2-2q_z^2 & 2q_xq_y - 2q_wq_z & 2q_xq_z + 2q_wq_y \\ 2q_xq_y+2q_wq_z & 1-2q_x^2-2q_z^2 & 2q_yq_z-2q_wq_x\\ 2q_xq_z-2q_wq_y& 2q_yq_z+2q_wq_x& 1-2q_x^2-2q_y^2 \end{bmatrix} \qquad(72) R(q)=12qy22qz22qxqy+2qwqz2qxqz2qwqy2qxqy2qwqz12qx22qz22qyqz+2qwqx2qxqz+2qwqy2qyqz2qwqx12qx22qy2(72)

旋转矩阵的乘法与旋转四元素的乘法之间的关系:
R(0q1)R(1q2)=R(0q1⊗1q2)(73) \mathbf{R}(\bm{^0q_1})\mathbf{R}(^1\bm{q}_2) = \mathbf{R}(^0\bm{q}_1 \otimes {^1}\bm{q}_2) \qquad(73) R(0q1)R(1q2)=R(0q11q2)(73)
指数映射
R(q)=exp(θu∧)(74) \mathbf{R}(\bm{q}) = exp(\theta\bm{u}^\land) \qquad (74) R(q)=exp(θu)(74)
》1.5 四元素对时间的导数

待续。。。。。。

参考文献:
[1] Indirect Kalman Filter for 3D Attitude Estimation
[2] Quaternion kinematics for the error-state Kalman filter
[3] 视觉SLAM十四讲 从理论到实践

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值