基于muist数据集的maxout网络实现分类 ----代码分享

本文介绍如何使用TensorFlow在Windows环境下加载并分析MNIST数据集,通过定义正向传播结构、反向传播参数,实现对MNIST数据集的手写数字识别,并通过200个训练周期对模型进行训练。

运行环境:windows,tensorflow - gpu-1.13.1

#---------------------------------理解mnist数据集
#导入mnist数据集
from tensorflow.examples.tutorials.mnist import input_data #从网上下载mnist数据集的模块
mnist = input_data.read_data_sets('MNIST_data/',one_hot = False) #从指定文件夹导入数据集的数据
##分析mnist数据集
#print('输入训练数据集数据:',mnist.train.images) #打引导如数据集的数据
#print('输入训练数据集shape:',mnist.train.images.shape) #打印训练数据集的形状
#print('输入测试数据集shape:',mnist.test.images.shape) #用于评估训练过程中的准确度
#print('输入验证数据集shape:',mnist.validation.images.shape) #用于评估最终模型的准确度
#print('输入标签的shape:',mnist.train.labels.shape)
#展示mnist数据集
#import pylab 
#im = mnist.test.images[6] #train中的第六张图
#im = im.reshape(-1,28)
#pylab.imshow(im)
#pylab.show()


#-----------------------------------------------

#-------------------------------正向传播结构
import tensorflow as tf
tf.reset_default_graph()
#分析图片特点定义变量
#define placeholder
x = tf.placeholder(tf.float32,[None, 784]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值