深度学习 Win10 Anaconda3.5.1 tensorflow-gpu==1.13.1 CUDA10 Cudnn7.5 安装教程

部署运行你感兴趣的模型镜像

最近在学习深度学习,将所需软件整体整理成资料,希望能让更多在挣扎安装的朋友少跳一些坑,回头来看,整个过程好似布置音乐厅

print("请按顺序安装"*3)%务必按顺序安装,这样可以最大可能的减少意外情况

写在前面

TensorFlow可被用于语音识别或图像识别等多项机器深度学习领域,对2011年开发的深度学习基础架构DistBelief进行了各方面的改进,它可在小到一部智能手机、大到数千台数据中心服务器的各种设备上运行。TensorFlow将完全开源,任何人都可以用。

一,安装Anaconda3.5.1(开辟场地)

Anaconda自带包管理功能,自带编辑器,直接省去了安装其他变成软件和设置环境变量的过程!

安装Anaconda详细教程

安装好后,我们就已经有了演奏音乐的场地了,场地有了,没有演奏者怎么办?看下面!

二,安装tensorflow-gpu1.13.1(邀请演奏者)

Tensorflow我们的主角,这是一个深度学习的框架,具体好在哪里小白我现在还不是很清楚,不过它的使用数量远远超过第二的框架!
如果不想安装gpu版本在此教程后就结束了所有的安装!
安装Tensorflow详细教程
场地有了,演奏者也有了,总感觉少了些什么,对,就是乐器!

三,安装CUDA10(带来乐器)

CUDA(Compute Unified Device Architecture),是英伟达公司推出的一种基于新的并行编程模型和指令集架构的通用计算架构,它能利用英伟达GPU的并行计算引擎,比CPU更高效的解决许多复杂计算任务。

tensorflow-gpu版本必须要安装CUDA以及Cudnn才能正常工作,没安装就好比,一个演奏者没有乐器最厉害只能打B-BOX一样。
安装CUDA10教程
乐器我们也有了,可是,如果想听一场美妙绝伦的演奏的话,还需要给乐器合适环境,使她发音华润!

四,安装Cudnn(提升乐器音色)

cuDNN的全称为NVIDIA CUDA® Deep Neural Network library,是NVIDIA专门针对深度神经网络(Deep Neural Networks)中的基础操作而设计基于GPU的加速库。cuDNN为深度神经网络中的标准流程提供了高度优化的实现方式,例如convolution、pooling、normalization以及activation layers的前向以及后向过程。

cudnn的安装最简单,恭喜你成功坚持到了这一步,就差最后的一个移动文件夹就完全安装成功了!
安装Cudnn教程
恭喜你完全安装成功了!

五,结束语

后续学习内容更新会慢很多,或许两个星期更新一篇也说不定,该沉下心来学习了,希望更多人能早日结束安装软件的坑,如果觉得对您有帮助,欢迎点赞!

以上内容若有错误或不妥,欢迎指出,小白水平有限,有时间一定改正,谢谢!

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

name: UB-GOLD channels: - conda-forge - defaults dependencies: - brotli=1.1.0=h2466b09_3 - brotli-bin=1.1.0=h2466b09_3 - bzip2=1.0.8=h2bbff1b_6 - ca-certificates=2025.6.15=h4c7d964_0 - cairo=1.18.0=h1fef639_0 - chardet=5.2.0=pyhd8ed1ab_3 - contourpy=1.3.2=py310hc19bc0b_0 - cudatoolkit=11.8.0=h09e9e62_13 - cycler=0.12.1=pyhd8ed1ab_1 - expat=2.7.1=h8ddb27b_0 - faiss=1.9.0=py310cuda118h41c283c_0_cuda - faiss-gpu=1.9.0=hef1f8eb_0 - font-ttf-dejavu-sans-mono=2.37=hab24e00_0 - font-ttf-inconsolata=3.000=h77eed37_0 - font-ttf-source-code-pro=2.038=h77eed37_0 - font-ttf-ubuntu=0.83=h77eed37_3 - fontconfig=2.14.2=hbde0cde_0 - fonts-conda-ecosystem=1=0 - fonts-conda-forge=1=0 - fonttools=4.58.5=py310hdb0e946_0 - freetype=2.12.1=hdaf720e_2 - freetype-py=2.3.0=pyhd8ed1ab_0 - greenlet=3.2.3=py310h9e98ed7_0 - icu=73.2=h63175ca_0 - intel-openmp=2024.2.1=h57928b3_1083 - kiwisolver=1.4.8=py310he9f1925_1 - lcms2=2.16=h67d730c_0 - lerc=4.0.0=h6470a55_1 - libblas=3.9.0=32_h641d27c_mkl - libboost=1.84.0=h9a677ad_3 - libboost-python=1.84.0=py310h3e8ed56_7 - libbrotlicommon=1.1.0=h2466b09_3 - libbrotlidec=1.1.0=h2466b09_3 - libbrotlienc=1.1.0=h2466b09_3 - libcblas=3.9.0=32_h5e41251_mkl - libdeflate=1.20=hcfcfb64_0 - libfaiss=1.9.0=cuda118h51f90d9_0_cuda - libffi=3.4.4=hd77b12b_1 - libglib=2.80.2=h0df6a38_0 - libhwloc=2.11.2=default_hc8275d1_1000 - libiconv=1.18=h135ad9c_1 - libintl=0.22.5=h5728263_3 - libjpeg-turbo=3.1.0=h2466b09_0 - liblapack=3.9.0=32_h1aa476e_mkl - libpng=1.6.43=h19919ed_0 - libtiff=4.6.0=hddb2be6_3 - libwebp-base=1.5.0=h3b0e114_0 - libxcb=1.15=hcd874cb_0 - libxml2=2.12.7=h283a6d9_1 - libzlib=1.2.13=h2466b09_6 - m2w64-gcc-libgfortran=5.3.0=6 - m2w64-gcc-libs=5.3.0=7 - m2w64-gcc-libs-core=5.3.0=7 - m2w64-gmp=6.1.0=2 - m2w64-libwinpthread-git=5.0.0.4634.697f757=2 - matplotlib-base=3.10.1=py310h37e0a56_0 - mkl=2024.2.2=h66d3029_15 - msys2-conda-epoch=20160418=1 - munkres=1.1.4=pyhd8ed1ab_1 - openjpeg=2.5.2=h3d672ee_0 - openssl=3.5.1=h725018a_0 - packaging=25.0=pyh29332c3_1 - pandas=2.1.4=py310hecd3228_0 - pcre2=10.43=h17e33f8_0 - pixman=0.46.2=had0cd8c_0 - pthread-stubs=0.4=hcd874cb_1001 - pthreads-win32=2.9.1=h2466b09_4 - pycairo=1.27.0=py310hb6096a9_0 - pyparsing=3.2.3=pyhd8ed1ab_1 - python=3.10.18=h981015d_0 - python-dateutil=2.9.0.post0=pyhe01879c_2 - python-tzdata=2025.2=pyhd8ed1ab_0 - python_abi=3.10=2_cp310 - pytz=2025.2=pyhd8ed1ab_0 - qhull=2020.2=hc790b64_5 - rdkit=2023.09.6=py310he5583f7_2 - reportlab=4.4.1=py310ha8f682b_0 - rlpycairo=0.2.0=pyhd8ed1ab_0 - setuptools=78.1.1=py310haa95532_0 - six=1.17.0=pyhd8ed1ab_0 - sqlalchemy=2.0.41=py310ha8f682b_0 - sqlite=3.45.3=h2bbff1b_0 - tbb=2021.13.0=h62715c5_1 - tk=8.6.14=h5e9d12e_1 - typing_extensions=4.14.1=pyhe01879c_0 - tzdata=2025b=h04d1e81_0 - ucrt=10.0.22621.0=h57928b3_1 - unicodedata2=16.0.0=py310ha8f682b_0 - vc=14.42=haa95532_5 - vc14_runtime=14.44.35208=h818238b_26 - vs2015_runtime=14.44.35208=h38c0c73_26 - wheel=0.45.1=py310haa95532_0 - xorg-libxau=1.0.11=hcd874cb_0 - xorg-libxdmcp=1.1.3=hcd874cb_0 - xz=5.6.4=h4754444_1 - zlib=1.2.13=h2466b09_6 - zstd=1.5.6=h0ea2cb4_0 - pip: - addict==2.4.0 - annotated-types==0.7.0 - beautifulsoup4==4.13.4 - certifi==2025.6.15 - charset-normalizer==3.4.2 - colorama==0.4.6 - cython==3.1.2 - dgl==2.2.1+cu121 - filelock==3.13.1 - fsspec==2024.6.1 - future==1.0.0 - gdown==5.2.0 - grakel==0.1.10 - idna==3.10 - jinja2==3.1.4 - joblib==1.5.1 - littleutils==0.2.4 - markupsafe==2.1.5 - mmcv-full==1.7.2 - mpmath==1.3.0 - munch==4.0.0 - networkx==3.3 - numpy==1.23.5 - ogb==1.3.6 - opencv-python==4.12.0.88 - outdated==0.2.2 - pillow==11.0.0 - pip==25.1.1 - platformdirs==4.3.8 - psutil==7.0.0 - pydantic==2.11.7 - pydantic-core==2.33.2 - pygcl==0.1.2 - pysocks==1.7.1 - pyyaml==6.0.2 - regex==2024.11.6 - requests==2.32.4 - scikit-learn==1.5.1 - scipy==1.15.3 - seaborn==0.13.2 - soupsieve==2.7 - sympy==1.13.3 - texttable==1.7.0 - threadpoolctl==3.6.0 - tomli==2.2.1 - torch==2.1.2+cu121 - torch-cluster==1.6.3+pt21cu121 - torch-geometric==2.4.0 - torch-scatter==2.1.2+pt21cu121 - torch-sparse==0.6.18+pt21cu121 - torch-spline-conv==1.2.2+pt21cu121 - torchdata==0.7.1 - tqdm==4.67.1 - typing-extensions==4.12.2 - typing-inspection==0.4.1 - urllib3==2.5.0 - yapf==0.43.0 prefix: F:\applicationinstallpackage\anaconda\envs\UB-GOLD这是我想转移的文件environment.yml文件里的内容,我想用anaconda转移
最新发布
07-09
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值