线程池工具类

部署运行你感兴趣的模型镜像
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.*;
import java.util.concurrent.atomic.AtomicInteger;

/**
 * @author linfm
 * @create 2019-12-02 14:28
 **/
public class ThreadPoolFactory {

    private static Logger logger = LoggerFactory.getLogger(ThreadFactory.class);

    static AtomicInteger ct = new AtomicInteger();
    static int coreThread = 10;
    static int maxThread = 20;
    static int keepAliveTime = 10000;
    static int blockQueueSize = 10;
    static TimeUnit timeUnit = TimeUnit.MILLISECONDS;
    static String threadNamePrefix = "app-thread-";

    private static Map<String, Object> maps = new HashMap<>();


    private static ThreadFactory threadFactory = new ThreadFactory() {

        private AtomicInteger threadNo = new AtomicInteger(0);

        @Override
        public Thread newThread(Runnable r) {
            String threadName = threadNamePrefix + threadNo.incrementAndGet();
            return new Thread(r, threadName);
        }
    };

    private static RejectedExecutionHandler rejectedExecutionHandler = new RejectedExecutionHandler() {
        @Override
        public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
            logger.error("RejectExecution ");
        }
    };


    private static class Inner {
        private static ExecutorService executorService = new ThreadPoolExecutor(coreThread, maxThread, keepAliveTime, timeUnit,
                new ArrayBlockingQueue<>(blockQueueSize), threadFactory, rejectedExecutionHandler);
    }

    public static ExecutorService getExecutorService() {
        return Inner.executorService;
    }

    public static void main(String[] args) {
        getExecutorService().submit(new Runnable() {
            @Override
            public void run() {
                System.out.println("test");
            }
        });
    }
}

 

您可能感兴趣的与本文相关的镜像

Llama Factory

Llama Factory

模型微调
LLama-Factory

LLaMA Factory 是一个简单易用且高效的大型语言模型(Large Language Model)训练与微调平台。通过 LLaMA Factory,可以在无需编写任何代码的前提下,在本地完成上百种预训练模型的微调

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值