# -*- coding: utf-8 -*-
"""
Created on Fri May 19 11:57:46 2017
@author: 代码医生 qq群:40016981,公众号:xiangyuejiqiren
@blog:http://blog.youkuaiyun.com/lijin6249
"""
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
from sklearn.utils import shuffle
# 模拟数据点
def generate(sample_size, mean, cov, diff, regression):
num_classes = 2 # len(diff)
samples_per_class = int(sample_size / 2)
X0 = np.random.multivariate_normal(mean, cov, samples_per_class)
Y0 = np.zeros(samples_per_class)
for ci, d in enumerate(diff):
X1 = np.random.multivariate_normal(mean + d, cov, samples_per_class)
Y1 = (ci + 1) * np.ones(samples_per_class)
X0 = np.concatenate((X0, X1))
Y0 = np.concatenate((Y0, Y1))
if regression == False: # one-hot 0 into the vector "1 0
class_ind = [Y == class_number for class_number in range(num_classes)]
Y = np.asarray(np.hstack(class_ind), dtype=np.float32)
X, Y = shuffle(X0, Y0)
return X, Y
input_dim = 2
np.random.seed(10)
num_classes = 2
mean = np.random.randn(num_classes)
cov = np.eye(num_classes)
X, Y = generate(1000, mean, cov, [3.0], True)
colors = ['r' if l == 0 else 'b' for l in Y[:]]
plt.scatter(X[:, 0], X[:, 1], c=colors)
plt.xlabel("Scaled age (in yrs)")
plt.ylabel("Tumor size (in cm)")
plt.show()
lab_dim = 1
# tf Graph Input
input_features = tf.placeholder(tf.float32, [None, input_dim])
input_labels = tf.placeholder(tf.float32, [None, lab_dim])
# Set model weights
W = tf.Variable(tf.random_normal([input_dim, lab_dim]), name="weight")
b = tf.Variable(tf.zeros([lab_dim]), name="bias")
output = tf.nn.sigmoid(tf.matmul(input_features, W) + b)
cross_entropy = -(input_labels * tf.log(output) + (1 - input_labels) * tf.log(1 - output))
ser = tf.square(input_labels - output)
loss = tf.reduce_mean(cross_entropy)
err = tf.reduce_mean(ser)
optimizer = tf.train.AdamOptimizer(0.04) # 尽量用这个--收敛快,会动态调节梯度
train = optimizer.minimize(loss) # let the optimizer train
maxEpochs = 50
minibatchSize = 25
# 启动session
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(maxEpochs):
sumerr = 0
for i in range(np.int32(len(Y) / minibatchSize)):
x1 = X[i * minibatchSize:(i + 1) * minibatchSize, :]
y1 = np.reshape(Y[i * minibatchSize:(i + 1) * minibatchSize], [-1, 1])
tf.reshape(y1, [-1, 1])
_, lossval, outputval, errval = sess.run([train, loss, output, err],
feed_dict={input_features: x1, input_labels: y1})
sumerr = sumerr + errval
print("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(lossval), "err=",
sumerr / np.int32(len(Y) / minibatchSize))
# 图形显示
train_X, train_Y = generate(100, mean, cov, [3.0], True)
colors = ['r' if l == 0 else 'b' for l in train_Y[:]]
plt.scatter(train_X[:, 0], train_X[:, 1], c=colors)
# plt.scatter(train_X[:, 0], train_X[:, 1], c=train_Y)
# plt.colorbar()
# x1w1+x2*w2+b=0
# x2=-x1* w1/w2-b/w2
x = np.linspace(-1, 8, 200)
y = -x * (sess.run(W)[0] / sess.run(W)[1]) - sess.run(b) / sess.run(W)[1]
plt.plot(x, y, label='Fitted line')
plt.legend()
plt.show()