Codeforces 414b Mashmokh and ACM

Mashmokh's boss, Bimokh, didn't like Mashmokh. So he fired him. Mashmokh decided to go to university and participate in ACM instead of finding a new job. He wants to become a member of Bamokh's team. In order to join he was given some programming tasks and one week to solve them. Mashmokh is not a very experienced programmer. Actually he is not a programmer at all. So he wasn't able to solve them. That's why he asked you to help him with these tasks. One of these tasks is the following.

A sequence of l integers b1, b2, ..., bl (1 ≤ b1 ≤ b2 ≤ ... ≤ bl ≤ n) is called good if each number divides (without a remainder) by the next number in the sequence. More formally  for all i (1 ≤ i ≤ l - 1).

Given n and k find the number of good sequences of length k. As the answer can be rather large print it modulo 1000000007(109 + 7).

Input

The first line of input contains two space-separated integers n, k (1 ≤ n, k ≤ 2000).

Output

Output a single integer — the number of good sequences of length k modulo 1000000007 (109 + 7).

Examples
input
3 2
output
5
input
6 4
output
39
input
2 1
output
2
Note

In the first sample the good sequences are: [1, 1], [2, 2], [3, 3], [1, 2], [1, 3].


#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MOD	1000000007
#define N 2005
int dp[N][N],n;
void init()
{
	int i,j,z,k;
	for(i=1;i<=N;i++)
	{
		dp[1][i]=1;
	}
	for(i=1;i<=N;i++)
     for(j=1;j<=N;j++)
	  for(z=j;z<=N;z+=j)
	   dp[i][z]=(dp[i][z]+dp[i-1][j])%MOD;
	   
}
int main()
{
	int z,k,i,j;
	init();
	while(cin>>n>>k)
	{
	   int s=0;
	   	 for(i=1;i<=n;i++)
	   	 {
	   	 	s+=dp[k][i];
	   	 	s%=MOD;
			}
			cout<<s<<endl;
	} 
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值