大模型 | NEFTune之引入随机噪声对大模型训练的收益

大模型 | NEFTune之引入随机噪声对大模型训练的收益

paper中提到,在模型foward过程中,对inputs_embedding增加适度的随机噪声,会带来显著的收益。

Paper: https://arxiv.org/pdf/2310.05914.pdf
Github: https://github.com/neelsjain/NEFTune


理论

核心是输入经过Embedding层后,再加入一个均匀分布的噪声,噪声的采样范围为 [ − α L d , α L d ] [-\frac{\alpha}{\sqrt{Ld}},\frac{\alpha}{\sqrt{Ld}}] [Ld α,Ld

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值