An another dp problem. The key to solve is still to find the dp state, here we chose the score player 1 get more than player 2. dp[i][j] means the score exceeded between position i and j in the array. So the initial state is dp[i][i] = nums[i], and the state transformation is dp[i][j] = max(nums[i]-dp[i+1][j],nums[j]-dp[i][j-1]), since whenever player 1 or player 2 chose a new number, the exceeding score will be the difference between the new number and the last dp state.
class Solution {
public:
bool PredictTheWinner(vector<int>& nums) {
int length = nums.size();
int dp[25][25];
for(int i=0;i<length;i++){
dp[i][i]=nums[i];
}
for(int i=length-2;i>=0;i--){
for(int j=i+1;j<length;j++){
dp[i][j] = max(nums[i]-dp[i+1][j],nums[j]-dp[i][j-1]);
}
}
if(dp[0][length-1]>=0) return true;
return false;
}
};
动态规划解决博弈论问题
本文介绍了一种使用动态规划解决两人轮流取数游戏中胜者预测的问题。通过定义状态dp[i][j]为玩家1在位置i到j区间内得分超过玩家2的分数,给出了具体的动态转移方程。
5万+

被折叠的 条评论
为什么被折叠?



