一、Java管道流
要在文本框中显示控制台输出,我们必须用某种方法“截取”控制台流。换句话说,我们要有一种高效地读取写入到System.out和System.err所有内容的方法。Java的管道流PipedInputStream和PipedOutputStream是一个非常有效的工具。
写入到PipedOutputStream输出流的数据可以从对应的PipedInputStream输入流读取。Java的管道流极大地方便了我们截取控制台输出。Listing 1显示了一种非常简单的截取控制台输出方案。
【Listing 1:用管道流截取控制台输出】
- PipedInputStream pipedIS = new PipedInputStream();
- PipedOutputStream pipedOS = new PipedOutputStream();
- try {
- pipedOS.connect(pipedIS);
- }
- catch(IOException e) {
- System.err.println("连接失败");
- System.exit(1);
- }
- PrintStream ps = new PrintStream(pipedOS);
- System.setOut(ps);
- System.setErr(ps);
这里我们只是建立了一个PipedInputStream,把它设置为所有写入控制台流的数据的最终目的地。所有写入到控制台流的数据都被转到PipedOutputStream,这样,从相应的PipedInputStream读取就可以迅速地截获所有写入控制台流的数据。接下来的事情似乎只剩下在Swing JTextArea中显示从pipedIS流读取的数据,得到一个能够在文本框中显示控制台输出的程序。遗憾的是,在使用Java管道流时有一些重要的注意事项。只有认真对待所有这些注意事项才能保证Listing 1的代码稳定地运行。下面我们来看第一个注意事项。
1.1 注意事项一
PipedInputStream运用的是一个1024字节固定大小的循环缓冲区。写入PipedOutputStream的数据实际上保存到对应的PipedInputStream的内部缓冲区。从PipedInputStream执行读操作时,读取的数据实际上来自这个内部缓冲区。如果对应的PipedInputStream输入缓冲区已满,任何企图写入PipedOutputStream的线程都将被阻塞。而且这个写操作线程将一直阻塞,直至出现读取PipedInputStream的操作从缓冲区删除数据。
这意味着,向PipedOutputStream写数据的线程不应该是负责从对应PipedInputStream读取数据的唯一线程。从图1可以清楚地看出这里的问题所在:假设线程t是负责从PipedInputStream读取数据的唯一线程;另外,假定t企图在一次对PipedOutputStream的write()方法的调用中向对应的PipedOutputStream写入2000字节的数据。在t线程阻塞之前,它最多能够写入1024字节的数据(PipedInputStream内部缓冲区的大小)。然而,一旦t被阻塞,读取PipedInputStream的操作就再也不会出现,因为t是唯一读取PipedInputStream的线程。这样,t线程已经完全被阻塞,同时,所有其他试图向PipedOutputStream写入数据的线程也将遇到同样的情形。
图1:管道流工作过程
这并不意味着在一次write()调用中不能写入多于1024字节的数据。但应当保证,在写入数据的同时,有另一个线程从PipedInputStream读取数据。
Listing 2示范了这个问题。这个程序用一个线程交替地读取PipedInputStream和写入PipedOutputStream。每次调用write()向PipedInputStream的缓冲区写入20字节,每次调用read()只从缓冲区读取并删除10个字节。内部缓冲区最终会被写满,导致写操作阻塞。由于我们用同一个线程执行读、写操作,一旦写操作被阻塞,就不能再从PipedInputStream读取数据。
【Listing 2:用同一个线程执行读/写操作导致线程阻塞】
- import java.io.*;
- //用同一个线程执行读/写操作导致线程阻塞】
- public class PipedStreamWithOneThread {
- static PipedInputStream pipedIS = new PipedInputStream();
- static PipedOutputStream pipedOS = new PipedOutputStream();
- public static void main(String[] a){
- try {
- pipedIS.connect(pipedOS);
- }catch(IOException e) {
- System.err.println("连接失败");
- System.exit(1);
- }
- byte[] inArray = new byte[10];
- byte[] outArray = new byte[20];
- int bytesRead = 0;
- try {
- pipedOS.write(outArray, 0, 20); // 向pipedOS发送20字节数据
- System.out.println(" 已发送20字节...");
- // 在每一次循环迭代中,读入10字节// 发送20字节
- bytesRead = pipedIS.read(inArray, 0, 10);
- System.out.println(" 已读取10字节...");
- System.out.println(" 10");
- int i=0;
- while(bytesRead != -1) {
- pipedOS.write(outArray, 0, 20);
- System.out.println(" 已发送20字节..."+i);
- i++;
- bytesRead = pipedIS.read(inArray, 0, 10);
- System.out.println(" 已读取10字节...");
- System.out.println(10+10*i);
- }
- }catch(IOException e) {
- System.err.println("读取pipedIS时出现错误: " + e);
- System.exit(1);
- }
- }
- }
只要把读/写操作分开到不同的线程,Listing 2的问题就可以轻松地解决。
Listing 3是Listing 2经过修改后的版本,它在一个单独的线程中执行写入PipedOutputStream的操作(和读取线程不同的线程)。为证明一次写入的数据可以超过1024字节,我们让写操作线程每次调用PipedOutputStream的write()方法时写入2000字节。那么,在startWriterThread()方法中创建的线程是否会阻塞呢?按照Java运行时线程调度机制,它当然会阻塞。写操作在阻塞之前实际上最多只能写入1024字节的有效载荷(即PipedInputStream缓冲区的大小)。但这并不会成为问题,因为主线程(main)很快就会从PipedInputStream的循环缓冲区读取数据,空出缓冲区空间。最终,写操作线程会从上一次中止的地方重新开始,写入2000字节有效载荷中的剩余部分。
【Listing 3:把读/写操作分开到不同的线程】
- import java.io.IOException;
- import java.io.PipedInputStream;
- import java.io.PipedOutputStream;
- //把读/写操作分开到不同的线程
- public class PipedStreamWithTwoThread {
- static PipedInputStream pipedIS = new PipedInputStream();
- static PipedOutputStream pipedOS = new PipedOutputStream();
- public static void main(String[] a){
- try {
- pipedIS.connect(pipedOS);
- }catch(IOException e) {
- System.err.println("连接失败");
- System.exit(1);
- }
- byte[] inArray = new byte[10];
- int bytesRead = 0;
- startWriterThread(); //启动write线程
- try {
- bytesRead = pipedIS.read(inArray, 0, 10); //每次读10字节
- System.out.println("已读取"+bytesRead+"字节...");
- int i=0;
- while(bytesRead != -1) {
- bytesRead = pipedIS.read(inArray, 0, 10);
- System.out.println("已读取"+bytesRead+"字节...");
- //下面这段防止程序无限执行
- /*i++;
- if (i==300) {
- System.exit(0);
- }*/
- }
- }catch(IOException e) {
- System.err.println("读取pipedIS时出现错误: " + e);
- System.exit(1);
- }
- }
- //创建一个独立的线程 执行write操作
- private static void startWriterThread(){
- new Thread(new Runnable(){
- public void run(){
- byte outArray[]=new byte[2000];
- int j=0;
- while (j==0) { //无限循环
- try {
- pipedOS.write(outArray, 0, 2000); //一次最多写入1024字节
- j++;
- } catch (IOException e) {
- System.err.println("写操作失败");
- System.exit(1);
- }
- System.out.println("已发送2000字节...");
- }
- }
- }).start();
- }
- }
也许我们不能说这个问题是Java管道流设计上的缺陷,但在应用管道流时,它是一个必须密切注意的问题。下面我们来看看第二个更重要(更危险的)问题。
1.2 注意事项二
从PipedInputStream读取数据时,如果符合下面三个条件,就会出现IOException异常:
- 试图从PipedInputStream读取数据,
- PipedInputStream的缓冲区为“空”(即不存在可读取的数据),
- 最后一个向PipedOutputStream写数据的线程不再活动(通过Thread.isAlive()检测)。
这是一个很微妙的时刻,同时也是一个极其重要的时刻。假定有一个线程w向PipedOutputStream写入数据;另一个线程r从对应的PipedInputStream读取数据。下面一系列的事件将导致r线程在试图读取PipedInputStream时遇到IOException异常:
- w向PipedOutputStream写入数据。
- w结束(w.isAlive()返回false)。
- r从PipedInputStream读取w写入的数据,清空PipedInputStream的缓冲区。
- r试图再次从PipedInputStream读取数据。这时PipedInputStream的缓冲区已经为空,而且w已经结束,从而导致在读操作执行时出现IOException异常。
构造一个程序示范这个问题并不困难,只需从Listing 3的startWriterThread()方法中,删除while(true)条件。这个改动阻止了执行写操作的方法循环执行,使得执行写操作的方法在一次写入操作之后就结束运行。如前所述,此时主线程试图读取PipedInputStraem时,就会遇到一个IOException异常。
这是一种比较少见的情况,而且不存在直接修正它的方法。请不要通过从管道流派生子类的方法修正该问题——在这里使用继承是完全不合适的。而且,如果Sun以后改变了管道流的实现方法,现在所作的修改将不再有效。
最后一个问题和第二个问题很相似,不同之处在于,它在读线程(而不是写线程)结束时产生IOException异常。
1.3 注意事项三
如果一个写操作在PipedOutputStream上执行,同时最近从对应PipedInputStream读取的线程已经不再活动(通过Thread.isAlive()检测),则写操作将抛出一个IOException异常。假定有两个线程w和r,w向PipedOutputStream写入数据,而r则从对应的PipedInputStream读取。下面一系列的事件将导致w线程在试图写入PipedOutputStream时遇到IOException异常:
- 写操作线程w已经创建,但r线程还不存在。
- w向PipedOutputStream写入数据。
- 读线程r被创建,并从PipedInputStream读取数据。
- r线程结束。
- w企图向PipedOutputStream写入数据,发现r已经结束,抛出IOException异常。
实际上,这个问题不象第二个问题那样棘手。和多个读线程/单个写线程的情况相比,也许在应用中有一个读线程(作为响应请求的服务器)和多个写线程(发出请求)的情况更为常见。
1.4 解决问题
要防止管道流前两个局限所带来的问题,方法之一是用一个ByteArrayOutputStream作为代理或替代PipedOutputStream。Listing 4显示了一个LoopedStreams类,它用一个ByteArrayOutputStream提供和Java管道流类似的功能,但不会出现死锁和IOException异常。这个类的内部仍旧使用管道流,但隔离了本文介绍的前两个问题。我们先来看看这个类的公用方法(参见图2)。构造函数很简单,它连接管道流,然后调用startByteArrayReaderThread()方法(稍后再讨论该方法)。getOutputStream()方法返回一个OutputStream(具体地说,是一个ByteArrayOutputStream)用以替代PipedOutputStream。写入该OutputStream的数据最终将在getInputStream()方法返回的流中作为输入出现。和使用PipedOutputStream的情形不同,向ByteArrayOutputStream写入数据的线程的激活、写数据、结束不会带来负面效果。
图2:ByteArrayOutputStream原理
【Listing 4:防止管道流应用中出现的常见问题】
- import java.io.ByteArrayOutputStream;
- import java.io.IOException;
- import java.io.InputStream;
- import java.io.OutputStream;
- import java.io.PipedInputStream;
- import java.io.PipedOutputStream;
- public class LoopedStreams {
- private PipedOutputStream pipedOS=new PipedOutputStream();
- private boolean keepRunning=true;
- private ByteArrayOutputStream byteArrayOS=new ByteArrayOutputStream(){
- public void close() {
- System.out.println("byteArrayOS.close()");
- keepRunning=false;
- try {
- super.close();
- pipedOS.close();
- } catch (IOException e) {
- System.out.println("关闭byteArrayOS错误:"+e.getMessage());
- System.exit(1);
- }
- }
- };
- private PipedInputStream pipedIS=new PipedInputStream(){
- public void close() {
- System.out.println("pipedIS.close()");
- keepRunning=false;
- try {
- super.close();
- } catch (IOException e) {
- System.out.println("关闭pipedIS错误:"+e.getMessage());
- System.exit(1);
- }
- }
- };
- public LoopedStreams() throws IOException{
- // TODO 自动生成构造函数存根
- pipedOS.connect(pipedIS);
- startByteArrayReaderThread();
- }
- public OutputStream getOutputStream() {
- return byteArrayOS;
- }
- public InputStream getInputStream() {
- return pipedIS;
- }
- public void startByteArrayReaderThread() {
- new Thread(new Runnable(){
- public void run() {
- while (keepRunning) {
- if (byteArrayOS.size()>0) { //检查流里面的字节
- byte buffer[]=null;
- synchronized (byteArrayOS) {
- buffer=byteArrayOS.toByteArray();
- byteArrayOS.reset(); //清空缓冲区
- }
- try {
- pipedOS.write(buffer, 0, buffer.length); //把提取的流发送到pipedOS
- } catch (IOException e) {
- System.out.println(e.getMessage());
- System.exit(1);
- }
- }else { //没有数据可用,线程进入休眠状态
- try {
- Thread.sleep(1000); //休眠1秒
- } catch (InterruptedException e) {
- }
- }
- }
- }
- }).start();
- }
- }
startByteArrayReaderThread()方法是整个类真正的关键所在。这个方法的目标很简单,就是创建一个定期地检查ByteArrayOutputStream缓冲区的线程。缓冲区中找到的所有数据都被提取到一个byte数组,然后写入到PipedOutputStream。由于PipedOutputStream对应的PipedInputStream由getInputStream()返回,从该输入流读取数据的线程都将读取到原先发送给ByteArrayOutputStream的数据。前面提到,LoopedStreams类解决了管道流存在的前二个问题,我们来看看这是如何实现的。
ByteArrayOutputStream具有根据需要扩展其内部缓冲区的能力。由于存在“完全缓冲”,线程向getOutputStream()返回的流写入数据时不会被阻塞。因而,第一个问题不会再给我们带来麻烦。另外还要顺便说一句,ByteArrayOutputStream的缓冲区永远不会缩减。例如,假设在能够提取数据之前,有一块500 K的数据被写入到流,缓冲区将永远保持至少500 K的容量。如果这个类有一个方法能够在数据被提取之后修正缓冲区的大小,它就会更完善。
第二个问题得以解决的原因在于,实际上任何时候只有一个线程向PipedOutputStream写入数据,这个线程就是由startByteArrayReaderThread()创建的线程。由于这个线程完全由LoopedStreams类控制,我们不必担心它会产生IOException异常。
LoopedStreams类还有一些细节值得提及。首先,我们可以看到byteArrayOS和pipedIS实际上分别是ByteArrayOutputStream和PipedInputStream的派生类的实例,也即在它们的close()方法中加入了特殊的行为。如果一个LoopedStreams对象的用户关闭了输入或输出流,在startByteArrayReaderThread()中创建的线程必须关闭。覆盖后的close()方法把keepRunning标记设置成false以关闭线程。另外,请注意startByteArrayReaderThread()中的同步块。要确保在toByteArray()调用和reset()调用之间ByteArrayOutputStream缓冲区不被写入流的线程修改,这是必不可少的。由于ByteArrayOutputStream的write()方法的所有版本都在该流上同步,我们保证了ByteArrayOutputStream的内部缓冲区不被意外地修改。
注意LoopedStreams类并不涉及管道流的第三个问题。该类的getInputStream()方法返回PipedInputStream。如果一个线程从该流读取,一段时间后终止,下次数据从ByteArrayOutputStream缓冲区传输到PipedOutputStream时就会出现IOException异常。
二、捕获Java控制台输出
Listing 5的ConsoleToTextArea类扩展Swing JTextArea捕获控制台输出。不要对这个类有这么多代码感到惊讶,必须指出的是,ConsoleToTextArea类有超过50%的代码用来进行测试。
【Listing 5:截获Java控制台输出】
- import java.awt.BorderLayout;
- import java.awt.event.WindowAdapter;
- import java.awt.event.WindowEvent;
- import java.io.BufferedReader;
- import java.io.IOException;
- import java.io.InputStream;
- import java.io.InputStreamReader;
- import java.io.PrintStream;
- import javax.swing.JFrame;
- import javax.swing.JOptionPane;
- import javax.swing.JScrollPane;
- import javax.swing.JTextArea;
- import javax.swing.text.Document;
- public class ConsoleToTextArea extends JTextArea{
- //转发所有从各个数组元素读取的数据到JTextArea
- public ConsoleToTextArea(InputStream[] inStreams) {
- for(int i = 0; i < inStreams.length; i++){
- startConsoleReaderThread(inStreams[i]);
- }
- }
- //捕获和显示所有写入到控制台流的数据
- public ConsoleToTextArea() throws IOException{
- final LoopedStreams loopedStreams=new LoopedStreams();
- //重定向System.out和System.err
- PrintStream printStream=new PrintStream(loopedStreams.getOutputStream());
- System.setOut(printStream);
- System.setErr(printStream);
- startConsoleReaderThread(loopedStreams.getInputStream());
- }
- private void startConsoleReaderThread(InputStream inStream){
- final BufferedReader bufferedReader=
- new BufferedReader(new InputStreamReader(inStream));
- new Thread(new Runnable(){
- public void run() {
- StringBuffer stringBuffer=new StringBuffer();
- try {
- String s;
- Document document=getDocument();
- while ((s=bufferedReader.readLine())!=null) {
- boolean caretAtEnd=false;
- caretAtEnd=getCaretPosition()==document.getLength()?true:false;
- stringBuffer.setLength(0);
- append(stringBuffer.append(s).append("/n").toString());
- if (caretAtEnd) {
- setCaretPosition(document.getLength());
- }
- }
- } catch (IOException e) {
- JOptionPane.showMessageDialog(null, "从bufferedReader中读取错误:"+e.getMessage());
- System.exit(1);
- }
- }
- }).start();
- }
- /**
- * @param args 以下代码用于测试
- */
- public static void main(String[] args) {
- JFrame jFrame=new JFrame("ConsoleToTextArea测试");
- ConsoleToTextArea consoleToTextArea=null;
- try {
- consoleToTextArea=new ConsoleToTextArea();
- } catch (IOException e) {
- System.err.println("创建ConsoleToTextArea出错");
- System.exit(1);
- }
- jFrame.getContentPane().add(new JScrollPane(consoleToTextArea),BorderLayout.CENTER);
- jFrame.setBounds(50,50,300,300);
- jFrame.setVisible(true);
- jFrame.addWindowListener(new WindowAdapter(){
- public void windowClosing(WindowEvent e) {
- System.exit(0);
- }
- });
- startWriterTestThread("写操作#1",System.err,950,50);
- startWriterTestThread("写操作#2",System.out,500,50);
- startWriterTestThread("写操作#3",System.out,200,50);
- startWriterTestThread("写操作#4",System.out,1000,50);
- startWriterTestThread("写操作#5",System.err,850,50);
- }
- public static void startWriterTestThread(final String name,final PrintStream ps,final int dalay,final int count) {
- new Thread(new Runnable(){
- public void run() {
- for (int i = 1; i < count; i++) {
- ps.println(name+" i="+i);
- try {
- Thread.sleep(dalay);
- } catch (InterruptedException e) {
- // TODO: handle exception
- }
- }
- }
- }).start();
- }
- }
main()方法创建了一个JFrame,JFrame包含一个ConsoleToTextArea的实例。这些代码并没有什么特别之处。Frame显示出来之后,main()方法启动一系列的写操作线程,写操作线程向控制台流输出大量信息。ConsoleToTextArea捕获并显示这些信息,如图一所示。
ConsoleToTextArea提供了两个构造函数。没有参数的构造函数用来捕获和显示所有写入到控制台流的数据,有一个InputStream[]参数的构造函数转发所有从各个数组元素读取的数据到JTextArea。稍后将有一个例子显示这个构造函数的用处。首先我们来看看没有参数的ConsoleToTextArea构造函数。这个函数首先创建一个LoopedStreams对象;然后请求Java运行时环境把控制台输出转发到LoopedStreams提供的OutputStream;最后,构造函数调用startConsoleReaderThread(),创建一个不断地把文本行追加到JTextArea的线程。注意,把文本追加到JTextArea之后,程序小心地保证了插入点的正确位置。
一般来说,Swing部件的更新不应该在AWT事件分派线程(AWT Event Dispatch Thread,AEDT)之外进行。对于本例来说,这意味着所有把文本追加到JTextArea的操作应该在AEDT中进行,而不是在startConsoleReaderThread()方法创建的线程中进行。然而,事实上在Swing中向JTextArea追加文本是一个线程安全的操作。读取一行文本之后,我们只需调用JText.append()就可以把文本追加到JTextArea的末尾。
三、捕获其他程序的控制台输出
在JTextArea中捕获Java程序自己的控制台输出是一回事,去捕获其他程序(甚至包括一些非Java程序)的控制台数据又是另一回事。ConsoleToTextArea提供了捕获其他应用的输出时需要的基础功能,Listing 6的OtherProgrameConsoleCapture利用ConsoleToTextArea,截取其他应用的输出信息然后显示在ConsoleToTextArea中。
【Listing 6:截获其他程序的控制台输出】
- import java.awt.BorderLayout;
- import java.awt.event.WindowAdapter;
- import java.awt.event.WindowEvent;
- import java.io.IOException;
- import java.io.InputStream;
- import javax.swing.JFrame;
- import javax.swing.JScrollPane;
- public class OtherProgrameConsoleCapture {
- private static Process process;
- /**
- * @param args
- */
- public static void main(String[] args) {
- if (args.length==0) {
- System.err.println("用法:java OtherProgrameConsoleCapture " +
- "<程序名字>{参数1 参数2...}");
- /*BufferedReader cin = new BufferedReader( new InputStreamReader(System.in ));
- try {
- String arg= cin.readLine();
- } catch (Exception e) {
- // TODO: handle exception
- }*/
- System.exit(0);
- }
- try {
- //启动命令行指定程序的新进程
- process=Runtime.getRuntime().exec(args);
- } catch (IOException e) {
- System.err.println("创建进程出错!");
- System.exit(1);
- }
- //获得新进程写入的流
- InputStream[] inStreams =new InputStream[] {
- process.getInputStream(),process.getErrorStream()};
- ConsoleToTextArea consoleToTextArea=new ConsoleToTextArea(inStreams);
- JFrame jFrame=new JFrame(args[0]+"控制台输出");
- jFrame.getContentPane().add(new JScrollPane(consoleToTextArea),BorderLayout.CENTER);
- jFrame.setBounds(50, 50, 400, 400);
- jFrame.setVisible(true);
- jFrame.addWindowListener(new WindowAdapter(){
- public void windowClosing(WindowEvent e) {
- process.destroy();
- try {
- process.waitFor(); //win98下可能会被挂起
- } catch (InterruptedException ee) {
- System.exit(0);
- }
- }
- });
- }
- }
OtherProgrameConsoleCapture 的工作过程如下:首先利用Runtime.exec()方法启动指定程序的一个新进程。启动新进程之后,从结果Process对象得到它的控制台流。之后,把这些控制台流传入ConsoleToTextArea(InputStream[])构造函数(这就是带参数ConsoleToTextArea构造函数的用处)。使用OtherProgrameConsoleCapture 时,在命令行上指定待截取其输出的程序名字。例如,如果在Windows XP下进入cmd中进入到classes目录 执行 java OtherProgrameConsoleCapture ping www.yahoo.akadns.net 查看效果(图3)
图3:截取其他程序的控制台输出
使用OtherProgrameConsoleCapture 时应该注意,被截取输出的应用程序最初输出的一些文本可能无法截取。因为在调用Runtime.exec()和ConsoleToTextArea初始化完成之间存在一小段时间差。在这个时间差内,应用程序输出的文本会丢失。当OtherProgrameConsoleCapture 窗口被关闭,process.destory()调用试图关闭Java程序开始时创建的进程。测试结果显示出,destroy()方法不一定总是有效(至少在Windows 98上是这样的)。似乎当待关闭的进程启动了额外的进程时,则那些进程不会被关闭。此外,在这种情况下OtherProgrameConsoleCapture 程序看起来未能正常结束。但在Windows NT下,一切正常。如果用JDK v1.1.x运行OtherProgrameConsoleCapture ,关闭窗口时会出现一个NullPointerException。这是一个JDK的Bug,JDK 1.2.x和JDK 1.3.x下就不会出现问题。