mnist cnn

本文介绍了一种使用TensorFlow构建的卷积神经网络模型,用于识别MNIST数据集中的手写数字。该模型包括两个卷积层和一个全连接层,并采用Adam优化器进行训练。文中还详细展示了如何实现数据的预处理、模型训练及评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import tensorflow as tf
import os
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.contrib.slim.python.slim.nets.inception_v3 import inception_v3_base


# 1、利用数据,在训练的时候实时提供数据
# mnist手写数字数据在运行时候实时提供给给占位符

tf.app.flags.DEFINE_integer("is_train", 1, "指定是否是训练模型,还是拿数据去预测")
FLAGS = tf.app.flags.FLAGS


def create_weights(shape):
    return tf.Variable(initial_value=tf.random_normal(shape=shape, stddev=0.01))


def create_model(x):
    """
    构建卷积神经网络
    :param x:
    :return:
    """
    # 1)第一个卷积大层
    with tf.variable_scope("conv1"):

        # 卷积层
        # 将x[None, 784]形状进行修改
        input_x = tf.reshape(x, shape=[-1, 28, 28, 1])
        # 定义filter和偏置
        conv1_weights = create_weights(shape=[5, 5, 1, 32])
        conv1_bias = create_weights(shape=[32])
        conv1_x = tf.nn.conv2d(input=input_x, filter=conv1_weights, strides=[1, 1, 1, 1], padding="SAME") + conv1_bias

        # 激活层
        relu1_x = tf.nn.relu(conv1_x)

        # 池化层
        pool1_x = tf.nn.max_pool(value=relu1_x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")

    # 2)第二个卷积大层
    with tf.variable_scope("conv2"):

        # 卷积层
        # 定义filter和偏置
        conv2_weights = create_weights(shape=[5, 5, 32, 64])
        conv2_bias = create_weights(shape=[64])
        conv2_x = tf.nn.conv2d(input=pool1_x, filter=conv2_weights, strides=[1, 1, 1, 1], padding="SAME") + conv2_bias

        # 激活层
        relu2_x = tf.nn.relu(conv2_x)

        # 池化层
        pool2_x = tf.nn.max_pool(value=relu2_x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")

    # 3)全连接层
    with tf.variable_scope("full_connection"):
        # [None, 7, 7, 64]->[None, 7 * 7 * 64]
        # [None, 7 * 7 * 64] * [7 * 7 * 64, 10] = [None, 10]
        x_fc = tf.reshape(pool2_x, shape=[-1, 7 * 7 * 64])
        weights_fc = create_weights(shape=[7 * 7 * 64, 10])
        bias_fc = create_weights(shape=[10])
        y_predict = tf.matmul(x_fc, weights_fc) + bias_fc

    return y_predict


def full_connected_mnist():
    """
    单层全连接神经网络识别手写数字图片
    特征值:[None, 784]
    目标值:one_hot编码 [None, 10]
    :return:
    """
    mnist = input_data.read_data_sets("./mnist_data/", one_hot=True)
    # 1、准备数据
    # x [None, 784] y_true [None. 10]
    with tf.variable_scope("mnist_data"):
        x = tf.placeholder(tf.float32, [None, 784])
        y_true = tf.placeholder(tf.int32, [None, 10])

    y_predict = create_model(x)

    # 3、softmax回归以及交叉熵损失计算
    with tf.variable_scope("softmax_crossentropy"):
        # labels:真实值 [None, 10]  one_hot
        # logits:全脸层的输出[None,10]
        # 返回每个样本的损失组成的列表
        loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_predict))

    # 4、梯度下降损失优化
    with tf.variable_scope("optimizer"):
        # 学习率
        train_op = tf.train.AdamOptimizer(0.001).minimize(loss)

    # 5、得出每次训练的准确率(通过真实值和预测值进行位置比较,每个样本都比较)
    with tf.variable_scope("accuracy"):
        equal_list = tf.equal(tf.argmax(y_true, 1), tf.argmax(y_predict, 1))
        accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32))

    # (2)收集要显示的变量
    # 先收集损失和准确率
    tf.summary.scalar("losses", loss)
    tf.summary.scalar("acc", accuracy)

    # 初始化变量op
    init_op = tf.global_variables_initializer()

    # (3)合并所有变量op
    merged = tf.summary.merge_all()

    # 创建模型保存和加载
    saver = tf.train.Saver()

    # 开启会话去训练
    with tf.Session() as sess:
        # 初始化变量
        sess.run(init_op)

        # (1)创建一个events文件实例
        file_writer = tf.summary.FileWriter("./tmp/summary/", graph=sess.graph)

        # 加载模型
        # if os.path.exists("./tmp/modelckpt/checkpoint"):
        #     saver.restore(sess, "./tmp/modelckpt/fc_nn_model")

        if FLAGS.is_train == 1:
            # 循环步数去训练
            for i in range(3000):
                # 获取数据,实时提供
                # 每步提供50个样本训练
                mnist_x, mnist_y = mnist.train.next_batch(50)
                # 运行训练op
                sess.run(train_op, feed_dict={x: mnist_x, y_true: mnist_y})
                print("训练第%d步的准确率为:%f, 损失为:%f " % (i+1,
                                     sess.run(accuracy, feed_dict={x: mnist_x, y_true: mnist_y}),
                                     sess.run(loss, feed_dict={x: mnist_x, y_true: mnist_y})
                                     )
                  )

                # 运行合变量op,写入事件文件当中
                summary = sess.run(merged, feed_dict={x: mnist_x, y_true: mnist_y})
                file_writer.add_summary(summary, i)
                # if i % 100 == 0:
                #     saver.save(sess, "./tmp/modelckpt/fc_nn_model")

        else:
            # 如果不是训练,我们就去进行预测测试集数据
            for i in range(100):
                # 每次拿一个样本预测
                mnist_x, mnist_y = mnist.test.next_batch(1)
                print("第%d个样本的真实值为:%d, 模型预测结果为:%d" % (
                                                      i+1,
                                                      tf.argmax(sess.run(y_true, feed_dict={x: mnist_x, y_true: mnist_y}), 1).eval(),
                                                      tf.argmax(sess.run(y_predict, feed_dict={x: mnist_x, y_true: mnist_y}), 1).eval()
                                                      )
                                                      )

    return None


if __name__ == "__main__":
    full_connected_mnist()

### MNIST 数据集与卷积神经网络 (CNN) 的实现 MNIST 是一个广泛应用于机器学习领域中的手写数字识别数据集,包含 70,000 张灰度图片(每张尺寸为 28×28 像素),其中前 60,000 张作为训练集,剩下的 10,000 张作为测试集。由于其简单性和代表性,MNIST 成为了验证新算法性能的理想实验对象。 以下是使用 TensorFlow 和 Keras 实现的一个完整的 CNN 模型来处理 MNIST 数据集的例子: #### 导入必要的库 ```python import tensorflow as tf from tensorflow.keras import datasets, layers, models import matplotlib.pyplot as plt ``` #### 加载并预处理 MNIST 数据集 加载 MNIST 数据集并将像素值标准化到 `[0, 1]` 范围内。 ```python (train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data() # 将图像调整为四维数组,并将其归一化至 [0, 1] train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255 test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255 ``` #### 构建卷积神经网络模型 构建一个简单的 CNN 结构,包括两层卷积层和池化层以及全连接层。 ```python model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) # 添加全连接层 model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(10)) ``` #### 编译和训练模型 配置优化器、损失函数和评估指标,并开始训练过程。 ```python model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) history = model.fit(train_images, train_labels, epochs=5, validation_split=0.1) ``` #### 测试模型性能 通过测试集评估模型的表现。 ```python test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print(f'\nTest accuracy: {test_acc}') ``` 以上代码展示了如何利用 TensorFlow/Keras 来快速建立一个适用于 MNIST 数据集的 CNN 模型[^4]。 ### 关于计算资源的选择 如果目标设备具有有限的计算能力,则可以考虑采用轻量化框架 tiny-cnn,在嵌入式系统或物联网设备上部署深度学习应用[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值