fvm_1d_swe
理论主要是参考:【教学向】从零开始的流体力学(一维浅水方程+有限体积法) - 知乎 (zhihu.com)
而且我话的不是动图,而且耗散项系数为0时,也太震荡了。
function fvm_test_1d
clear all ;
clc;
L = 1;
div = 100;%space number
dx = L/div;
x0 = 0;x1 = 1;
y00 = 0;y1 = 0.25;
t0 = 0.0;
Final_time = 5;
g = 1.0;
x = (1:div)*dx - 0.5*dx;
x = x';
%initial height
ini_h = u0(x);
%initial velocity vector
ini_m = zeros(length(x),1);
ini_U = zeros(length(x),2);
ini_U(:,1) = ini_h;
ini_U(:,2) = ini_m;
[T,Y] = rk4(0,Final_time,ini_U,0.01,dx);
save Y Y
%initial height profile
function result = u0(x)
result = 0.1+0.1*exp(-64*(x-0.25).*(x-0.25));
end
function result = f(H,M,i)
result(1) = M(i);
result(2) = M(i)*M(i)/H(i) + (g/2)*H(i)*H(i);
end
function result = flux(H,M,L,R,div)
if(L==0)
result = f(H,M,R);%只用到第二个返回值
result(1) = 0;%将第一个返回值重写
return;
end
if(R==div+1)
result = f(H,M,L);
result(1) = 0;
return;
end
fl = f(H,M,L);
fr = f(H,M,R);
d = 0;%0.5;%0.2;%[0.5,0.2,0]
result(1) = (fl(1) + fr(1))/2 + d*(H(L) - H(R))/2;
result(2) = (fl(2) + fr(2))/2 + d*(M(L) - M(R))/2;
end
function curr_du = dUdt(t,U,dx)%传入的t参数用不到
curr_dhdt = [];
curr_dmdt = [];
curr_h = U(:,1);
curr_m = U(:,2);
div = size(U,1);
for i = 1:div
flux_l = flux(curr_h,curr_m,i-1,i,div);
flux_r = flux(curr_h,curr_m,i,i+1,div);
curr_dhdt = [curr_dhdt;(flux_l(1) - flux_r(1))/dx];
curr_dmdt = [curr_dmdt;(flux_l(2) - flux_r(2))/dx];
end
curr_du = [curr_dhdt,curr_dmdt];
end
function [T,Y] = rk4(t0,t1,y0,h,dx)
M = (t1-t0)/h;
T=t0:h:t1;
Y = y0;
for j=1:M
k1=h*feval(@dUdt,T(j),Y,dx);
k2=h*feval(@dUdt,T(j)+h/2,Y+k1/2,dx);
k3=h*feval(@dUdt,T(j),Y,dx);
k4=h*feval(@dUdt,T(j)+h,Y+k3,dx);
Y=Y+(k1+2*k2+2*k3+k4)/6;
Save_Indicator = 1;
if (Save_Indicator)
fprintf('Plot ... \n') ; plot(x, Y(:,1)); %grid on
title(['t = ', num2str(T(j), '%1.2f')]);
xlim([x0,x1])
ylim([y00,y1])
pause(0.001)
end
end
%R = [T,Y];
% plot(x,Y)
end
end