cs231n-notes-Lecture-9:AlexNet/VGGNet/GoogleNet/ResNet

本文介绍了几种主流的卷积神经网络架构,包括AlexNet、VGGNet、GoogleNet及ResNet,并探讨了小卷积核的优势,更深网络的设计理念及残差网络如何解决深层网络优化难题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Lecture 9 CNN Architectures

AlexNet

在这里插入图片描述

VGGNet

  • Small filters

    Why?

    • Stack of three 3x3 conv (stride 1) layers has same effective receptive field as one 7x7 conv layer
    • But deeper, more non-linearities
    • And fewer parameters: 3∗(32C2)3 * (3^2C^2)3(32C2) vs.72C27^2C^272C2 for C channels per layer
  • Deeper networks

在这里插入图片描述

GoogleNet

  • Deeper networks : 22layers.
  • efficient computation : Efficient “Inception” module.
  • No Fc layers.
  • Only 5 million parameters, 12x less than AlexNet. Most parameters in AlexNet or VGGNet are in fc layers.
  • Computational complexity.
  • Computational complexity solution : use “bottleneck” (1*1 convolutions, less filters) to reduce feature depth.

在这里插入图片描述

ResNet

Deeper Models may be harder to optimize although they have the ability to achiveve the same peformance theoretically because the additional layers can learn identify mapping.
But it’s ideal. Here is the solution of ResNet.

Residual: learn what should be added to or subtracted from the original input X. Intuitively, it’s easier to learn the bias than a direct mapping. The bias can be only a small change or zeros.

在这里插入图片描述

Training ResNet in practice:

  • Batch Normalization after every CONV layer
  • Xavier/2 initialization from He et al.
  • SGD + Momentum (0.9)
  • Learning rate: 0.1, divided by 10 when validation error plateaus
  • Mini-batch size 256
  • Weight decay of 1e-5
  • No dropout used

Experimental Results

  • Able to train very deep networks without degrading (152 layers on ImageNet, 1202 on Cifar)
  • Deeper networks now achieve lowing training error as expected
  • Swept 1st place in all ILSVRC and COCO 2015 competitions

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值