基于图像和收缩理论的安全输出反馈运动规划
1. 引言
在当今科技发展的浪潮中,安全可靠地部署自主机器人成为了一个备受关注的重要课题。这一过程需要对机器人在感知、规划和反馈控制等多个模块中可能面临的不确定性进行系统分析。然而,目前的先进方法大多是分别对各个模块进行分析。例如,先对感知进行验证,在名义动力学模型下寻找安全的规划,然后使用稳定的跟踪控制器。但这种方式忽略了各模块误差之间的传播问题。动力学和感知方面的不准确可能会使下游的反馈控制器不稳定,进而导致任务失败。这就凸显了将感知、规划和控制进行统一,以确保端到端自主流程安全性的必要性。
为了解决这一问题,我们引入了输出反馈运动规划问题(OFMP)。该问题旨在联合规划名义轨迹,并设计反馈控制器,使系统在使用不完美状态信息(即输出反馈)时能够安全地稳定到某个目标。具体来说,解决 OFMP 的一种方法是界定系统在使用输出反馈跟踪规划时可能到达的状态集合,也就是闭环输出反馈轨迹跟踪管,并确保该跟踪管无碰撞。但实际机器人在解决 OFMP 时面临着两大挑战:
- 计算效率挑战 :跟踪管需要能够针对任意轨迹进行高效计算,以便在规划循环中限制系统可以安全访问的状态集合。然而,解决可达性问题的计算量非常大。
- 传感器数据处理挑战 :在运行时处理丰富的传感器数据(如图像、深度图等)通常借助基于深度学习的感知模块。这些模块虽然强大,但容易出现误差。要界定这种误差以及它对轨迹跟踪误差的影响非常困难。
为应对第一个挑战,我们采用了收缩理论。该理论对于 OFMP 具有特殊意义,因为它能够实现以下两点:
- 控制器和估计器设计
超级会员免费看
订阅专栏 解锁全文
820

被折叠的 条评论
为什么被折叠?



