# coding: utf-8
import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.optimizers import RMSprop
np.random.seed(1337)
# download the mnist
(X_train, Y_train), (X_test, Y_test) = mnist.load_data()
# data pre-processing
X_train = X_train.reshape(X_train.shape[0], -1)/255
X_test = X_test.reshape(X_test.shape[0], -1)/255
Y_train = np_utils.to_categorical(Y_train, 10)
Y_test = np_utils.to_categorical(Y_test, 10)
# build neural network
model = Sequential([
Dense(32, input_dim=784),
Activation('relu'),
Dense(10),
Activation('softmax')
])
# define optimizer
rmsprop = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
# add metrics to get more results you want to see
model.compile(loss='categorical_crossentropy', optimizer=rmsprop, metrics=['accuracy'])
# training
print 'Training'
model.fit(X_train, Y_train, epochs=2, batch_size=32)
# testing
print 'Testing'
loss, accuracy = model.evaluate(X_test, Y_test)
print 'loss, accuracy: ', (loss, accuracy)
[深度学习框架] Keras上使用神经网络进行mnist分类
最新推荐文章于 2024-04-24 21:58:37 发布