[Problem]
Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.Note:
Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4}, A solution set is:
(-1, 0, 1)
(-1, -1, 2)
[Analysis]
直观的想法,使用3重循环,判断选出来的三个数之和是否等于0,如果等于0,则将这三个数排序,判断结果集中是否已经存在该结果,如果没有,则加入结果集。复杂度O(n^3),跑Judge_Small没问题,但是跑Judge_Large是会TLE的;分析上述问题:
(1) 输出每个结果排序的问题:其实可以先对整个num排序,然后输出的时候先输出外层循环的值,再输出中层循环的值,最后输出内层循环的值,这样就保证了输出的每个结果都是有序的;
(2) 输出结果判重的问题:既然已经对整个num排过序了,对于每一层循环,如果当前循环指向的数值与后面的若干个数值相同,则可以直接将指针指向下一个不相同的数值。例如:对于排序后的num[-1, -1, -1, 0, 0, 0, 1, 1, 1],用i,j,k表示循环的下标,当i=0, j=3, k=6时,判断num[i]+num[j]+num[k]=0,将结果写入,进入下一个循环。这时发现,num[k]后面有多个相同的数,则直接将k移到最后;同样,对于j而言,下一次循环,直接另j=6,而不用另j=4,然后再进行一次k=[6,7,8];对于i也是一样。这样做的优点,去重、剪枝,过Judge_Large也没问题了。
[Solution]
class Solution {
public:
vector<vector<int> > threeSum(vector<int> &num) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
int i = 0, j = 0, k = 0, m = 0;
vector<vector<int> > res;
if(num.size() <= 0)
return res;
// not null
sort(num.begin(), num.end());
while(i <= num.size() - 3){
// the first number is bigger than 0
if(num[i] > 0)break;
// add the second number
j = i + 1;
while(j <= num.size() - 2){
// the sum of the first two number is bigger than 0
if(num[i] + num[j] > 0)break;
// add the third number
k = j + 1;
while(k <= num.size() - 1){
// the sum of the three number is bigger than 0
if(num[i] + num[j] + num[k] > 0)break;
// the sum of the three number equals to 0, add to result
if(num[i] + num[j] + num[k] == 0){
vector<int> tmp;
tmp.push_back(num[i]);
tmp.push_back(num[j]);
tmp.push_back(num[k]);
res.push_back(tmp);
}
// move forward for same num[k]
m = num[k];
k++;
while(k <= num.size() - 1 && num[k] == m){
k++;
}
}
// move forward for same num[j]
m = num[j];
j++;
while(j <= num.size() - 2 && num[j] == m){
j++;
}
}
// move forward for same num[i]
m = num[i];
i++;
while(i <= num.size() - 3 && num[i] == m){
i++;
}
}
return res;
}
};