c++中引用和指针的区别

指针从本质上讲就是存放变量地址的一个变量,在逻辑上是独立的,它可以被改变,包括其所指向的地址的改变和其指向的地址中所存放的数据的改变。

引用是一个别名,它在逻辑上不是独立的,它的存在具有依附性,所以引用必须在一开始就被初始化,而且其引用的对象在其整个生命周期中是不能被改变的(自始至终只能依附于同一个变量)。


在C++中,指针和引用经常用于函数的参数传递,然而,指针传递参数和引用传递参数是有本质上的不同的:

指针传递参数本质上是值传递的方式,它所传递的是一个地址值。值传递过程中,被调函数的形式参数作为被调函数的局部变量处理,即在栈中开辟了内存空间以存放由主调函数放进来的实参的值,从而成为了实参的一个副本。值传递的特点是被调函数对形式参数的任何操作都是作为局部变量进行,不会影响主调函数的实参变量的值。(这里是在说实参指针本身的地址值不会变)

引用传递过程中,被调函数的形式参数虽然也作为局部变量在栈中开辟了内存空间,但是这时存放的是由主调函数放进来的实参变量的地址。被调函数对形参的任何操作都被处理成间接寻址,即通过栈中存放的地址访问主调函数中的实参变量。正因为如此,被调函数对形参做的任何操作都影响了主调函数中的实参变量。

引用传递和指针传递是不同的,虽然它们都是在被调函数栈空间上的一个局部变量,但是任何对于引用参数的处理都会通过一个间接寻址的方式操作到主调函数中的相关变量。而对于指针传递的参数,如果改变被调函数中的指针地址,它将影响不到主调函数的相关变量。如果想通过指针参数传递来改变主调函数中的相关变量,那就得使用指向指针的指针,或者指针引用。

程序在编译时分别将指针和引用添加到符号表上,符号表上记录的是变量名及变量所对应地址。指针变量在符号表上对应的地址值为指针变量的地址值,而引用在符号表上对应的地址值为引用对象的地址值。符号表生成后就不会再改,因此指针可以改变其指向的对象(指针变量中的值可以改),而引用对象则不能修改。

最后,总结一下指针和引用的相同点和不同点:

★相同点:

●都是地址的概念;

指针指向一块内存,它的内容是所指内存的地址;而引用则是某块内存的别名。

★不同点:

●指针是一个实体,而引用仅是个别名;

●引用只能在定义时被初始化一次,之后不可变;指针可变;引用“从一而终”,指针可以“见异思迁”;

●引用没有const,指针有const,const的指针不可变;(具体指没有int&const a这种形式,而const int& a是有     的,  前者指引用本身即别名不可以改变,这是当然的,所以不需要这种形式,后者指引用所指的值不可以改变)

●引用不能为空,指针可以为空;

●“sizeof 引用”得到的是所指向的变量(对象)的大小,而“sizeof 指针”得到的是指针本身的大小;

●指针和引用的自增(++)运算意义不一样;

●引用是类型安全的,而指针不是 (引用比指针多了类型检查)。

 

内容概要:本文介绍了基于SMA-BP黏菌优化算法优化反向传播神经网络(BP)进行多变量回归预测的项目实例。项目旨在通过SMA优化BP神经网络的权重阈值,解决BP神经网络易陷入局部最优、收敛速度慢及参数调优困难等问题。SMA算法模拟黏菌寻找食物的行为,具备优秀的全局搜索能力,能有效提高模型的预测准确性训练效率。项目涵盖了数据预处理、模型设计、算法实现、性能验证等环节,适用于多变量非线性数据的建模预测。; 适合人群:具备一定机器学习基础,特别是对神经网络优化算法有一定了解的研发人员、数据科学家研究人员。; 使用场景及目标:① 提升多变量回归模型的预测准确性,特别是在工业过程控制、金融风险管理等领域;② 加速神经网络训练过程,减少迭代次数训练时间;③ 提高模型的稳定性泛化能力,确保模型在不同数据集上均能保持良好表现;④ 推动智能优化算法与深度学习的融合创新,促进多领域复杂数据分析能力的提升。; 其他说明:项目采用Python实现,包含详细的代码示例注释,便于理解二次开发。模型架构由数据预处理模块、基于SMA优化的BP神经网络训练模块以及模型预测与评估模块组成,各模块接口清晰,便于扩展维护。此外,项目还提供了多种评价指标可视化分析方法,确保实验结果科学可信。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值