POJ3009深搜

博客介绍了Planet MM - 21上的滚球游戏,球从起点到终点,遇障碍物停止且障碍物消失,不能超过10次移动。需判断球能否到达终点及最少移动次数。采用深度优先搜索方法解决该问题,并给出输入输出格式。

题目:

On Planet MM-21, after their Olympic games this year, curling is getting popular. But the rules are somewhat different from ours. The game is played on an ice game board on which a square mesh is marked. They use only a single stone. The purpose of the game is to lead the stone from the start to the goal with the minimum number of moves.

Fig. 1 shows an example of a game board. Some squares may be occupied with blocks. There are two special squares namely the start and the goal, which are not occupied with blocks. (These two squares are distinct.) Once the stone begins to move, it will proceed until it hits a block. In order to bring the stone to the goal, you may have to stop the stone by hitting it against a block, and throw again.


Fig. 1: Example of board (S: start, G: goal)

The movement of the stone obeys the following rules:

  • At the beginning, the stone stands still at the start square.
  • The movements of the stone are restricted to x and y directions. Diagonal moves are prohibited.
  • When the stone stands still, you can make it moving by throwing it. You may throw it to any direction unless it is blocked immediately(Fig. 2(a)).
  • Once thrown, the stone keeps moving to the same direction until one of the following occurs:
    • The stone hits a block (Fig. 2(b), (c)).
      • The stone stops at the square next to the block it hit.
      • The block disappears.
    • The stone gets out of the board.
      • The game ends in failure.
    • The stone reaches the goal square.
      • The stone stops there and the game ends in success.
  • You cannot throw the stone more than 10 times in a game. If the stone does not reach the goal in 10 moves, the game ends in failure.


Fig. 2: Stone movements

Under the rules, we would like to know whether the stone at the start can reach the goal and, if yes, the minimum number of moves required.

With the initial configuration shown in Fig. 1, 4 moves are required to bring the stone from the start to the goal. The route is shown in Fig. 3(a). Notice when the stone reaches the goal, the board configuration has changed as in Fig. 3(b).


Fig. 3: The solution for Fig. D-1 and the final board configuration

Input

The input is a sequence of datasets. The end of the input is indicated by a line containing two zeros separated by a space. The number of datasets never exceeds 100.

Each dataset is formatted as follows.

the width(=w) and the height(=h) of the board
First row of the board
...
h-th row of the board

The width and the height of the board satisfy: 2 <= w <= 20, 1 <= h <= 20.

Each line consists of w decimal numbers delimited by a space. The number describes the status of the corresponding square.

0vacant square
1block
2start position
3goal position

The dataset for Fig. D-1 is as follows:

6 6
1 0 0 2 1 0
1 1 0 0 0 0
0 0 0 0 0 3
0 0 0 0 0 0
1 0 0 0 0 1
0 1 1 1 1 1

Output

For each dataset, print a line having a decimal integer indicating the minimum number of moves along a route from the start to the goal. If there are no such routes, print -1 instead. Each line should not have any character other than this number.

Sample Input

2 1
3 2
6 6
1 0 0 2 1 0
1 1 0 0 0 0
0 0 0 0 0 3
0 0 0 0 0 0
1 0 0 0 0 1
0 1 1 1 1 1
6 1
1 1 2 1 1 3
6 1
1 0 2 1 1 3
12 1
2 0 1 1 1 1 1 1 1 1 1 3
13 1
2 0 1 1 1 1 1 1 1 1 1 1 3
0 0

Sample Output

1
4
-1
4
10
-1

题意:滚球游戏。球从入口到出口,光滑将一直滚动,遇到障碍物停止,障碍物消失,直到出口,求滚动的次数

方法:深搜

代码:

//深搜最小滚动次数
//球只有遇到障碍物才会停止,2代表入口,3是出口,0是光滑区域,1代表障碍物
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int dir[4][2]={{1,0},{-1,0},{0,1},{0,-1}};
int ei,ej;
int map[25][25];
int l,h,steps,minx;
#define MAX 1000000
void dfs(int si,int sj)
{
    int i,pi,pj;
    if(steps>=10) return ;
    for(i=0;i<4;i++)
    {
        pi=si,pj=sj;
        while(1)
        {
            pi+=dir[i][0];
            pj+=dir[i][1];
            if(pi<=0||pi>h||pj<=0||pj>l) break;
            if(pi==ei&&pj==ej)
            {
                if(minx>steps+1) minx=steps+1;
                return;//退出此次dfs操作
            }
            else if(map[pi][pj]==1)
            {

                if(pi-dir[i][0]!=si||pj-dir[i][1]!=sj)
                {
                    map[pi][pj]=0;
                    steps++;
                    dfs(pi-dir[i][0],pj-dir[i][1]);
                    map[pi][pj]=1;
                    steps--;
                }
                break;
            }
        }
    }
}
int main()
{
    int si,sj,i,j;
    while((cin>>l>>h)&&(l&&h))
    {
        for(i=1;i<=h;i++)
            for(j=1;j<=l;j++)
            {
                scanf("%d",&map[i][j]);
                if(map[i][j]==2)
                    si=i,sj=j;
                else if(map[i][j]==3)
                    ei=i,ej=j;
            }
            minx=MAX;
            steps=0;
            dfs(si,sj);
            if(minx==MAX) printf("-1\n");
            else printf("%d\n",minx);
    }
    return 0;
}

 

### POJ 3009 Curling 2.0 的解题思路 POJ 3009 是一道典型的广度优先索 (BFS) 问题。题目描述了一个冰壶游戏,其中一个小球可以在二维平面上沿着水平或垂直方向移动,直到遇到障碍物(block)。当小球撞击到障碍物时,它会停止并摧毁该障碍物。目标是从起点出发,判断是否能够到达终点,并计算最少的移动次数。 #### 关键点分析 1. **状态表示**: 小球的状态可以通过其当前位置 `(x, y)` 和当前的方向来唯一确定。由于每次改变方向都会重新开始直线运动,因此需要记录路径中的转向次数。 2. **边界条件**: 如果小球超出地图范围,则视为非法操作;如果移动次数超过限定值 `10` 或无法达到终点,则返回失败结果。 3. **数据结构选择**: 使用队列存储待处理节点及其相关信息,包括坐标位置、已走步数以及剩余可变向机会等参数。 4. **算法流程**: 利用 BFS 方法逐层扩展可能的动作序列直至找到满足条件的目标结点为止。对于每一个合法的新位置都加入到下一层次继续探索。 以下是基于 Python 实现的一个简单版本: ```python from collections import deque def solve_curling(grid, sx, sy, gx, gy): n = len(grid) m = len(grid[0]) # Directions: up, down, left, right dx = [-1, 1, 0, 0] dy = [0, 0, -1, 1] visited = [[[False]*m for _ in range(n)] for __ in range(11)] queue = deque() # Initialize with starting point and zero moves. queue.append((sx, sy, 0)) visited[0][sx][sy] = True while queue: x, y, steps = queue.popleft() if grid[x][y] == 3: # Reached goal position return steps for d in range(4): # Try all four directions nx, ny = x + dx[d], y + dy[d] # Move as far as possible until hitting an obstacle or boundary while 0 <= nx < n and 0 <= ny < m and not visited[steps+1][nx][ny]: if grid[nx][ny] == 1: # Hit a block break elif grid[nx][ny] == 3: # Found the goal return steps + 1 # Mark this cell as visited under current step count visited[steps+1][nx][ny] = True queue.append((nx, ny, steps + 1)) # Continue moving straight ahead nx += dx[d]; ny += dy[d] return -1 # If no solution exists within limits. # Example usage based on input format provided earlier. if __name__ == "__main__": w, h = map(int, input().split()) grid = [] start_x, start_y = None, None end_x, end_y = None, None for i in range(h): row = list(map(int, input().strip().split())) if 2 in row: start_x, start_y = i, row.index(2) if 3 in row: end_x, end_y = i, row.index(3) grid.append(row) result = solve_curling(grid, start_x, start_y, end_x, end_y) print(result if result != -1 else "Impossible") # Print results accordingly. ``` 此代码片段实现了基本逻辑框架,具体细节可以根据实际需求调整优化[^5]。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值