categories in Benchmarks

Refinitiv外汇及利率基准服务概述

Browse key categories in Benchmarks

  • foreign exchange benchmark.

  • Interest rate benchmark

    Equity/share benchmark

    BENCHMARK DESCRIPTION Refinitiv provides an exchange rate service that publishes Spot, Forward and Non Deliverable Forward benchmark rates at specified times throughout the global trading day. Refinitiv is committed to publishing independent and transparent benchmark rates which, based on its methodology, it believes are reasonably designed to be reflective of the market at the time of each calculation. As part of its normal business practices, Refinitiv routinely reviews its policies and practices against appropriate international foreign exchange ‘FX’ benchmark regulations and guidance.

带开环升压转换器和逆变器的太阳能光伏系统 太阳能光伏系统驱动开环升压转换器和SPWM逆变器提供波形稳定、设计简单的交流电的模型 Simulink模型展示了一个完整的基于太阳能光伏的直流到交流电力转换系统,该系统由简单、透明、易于理解的模块构建而成。该系统从配置为提供真实直流输出电压的光伏阵列开始,然后由开环DC-DC升压转换器进行处理。升压转换器将光伏电压提高到适合为单相全桥逆变器供电的稳定直流链路电平。 逆变器使用正弦PWM(SPWM)开关来产生干净的交流输出波形,使该模型成为研究直流-交流转换基本操作的理想选择。该设计避免了闭环和MPPT的复杂性,使用户能够专注于光伏接口、升压转换和逆变器开关的核心概念。 此模型包含的主要功能: •太阳能光伏阵列在标准条件下产生~200V电压 •具有固定占空比操作的开环升压转换器 •直流链路电容器,用于平滑和稳定转换器输出 •单相全桥SPWM逆变器 •交流负载,用于观察实际输出行为 •显示光伏电压、升压输出、直流链路电压、逆变器交流波形和负载电流的组织良好的范围 •完全可编辑的结构,适合分析、实验和扩展 该模型旨在为太阳能直流-交流转换提供一个干净高效的仿真框架。布局简单明了,允许用户快速了解信号流,检查各个阶段,并根据需要修改参数。 系统架构有意保持模块化,因此可以轻松扩展,例如通过添加MPPT、动态负载行为、闭环升压控制或并网逆变器概念。该模型为进一步开发或整合到更大的可再生能源模拟中奠定了坚实的基础。
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license import contextlib import csv import urllib from copy import copy from pathlib import Path import cv2 import numpy as np import pytest import torch from PIL import Image from tests import CFG, MODEL, MODELS, SOURCE, SOURCES_LIST, TASK_MODEL_DATA, TMP from ultralytics import RTDETR, YOLO from ultralytics.cfg import TASK2DATA, TASKS from ultralytics.data.build import load_inference_source from ultralytics.data.utils import check_det_dataset from ultralytics.utils import ( ARM64, ASSETS, DEFAULT_CFG, DEFAULT_CFG_PATH, LINUX, LOGGER, ONLINE, ROOT, WEIGHTS_DIR, WINDOWS, YAML, checks, is_dir_writeable, is_github_action_running, ) from ultralytics.utils.downloads import download from ultralytics.utils.torch_utils import TORCH_1_9 IS_TMP_WRITEABLE = is_dir_writeable(TMP) # WARNING: must be run once tests start as TMP does not exist on tests/init def test_model_forward(): """Test the forward pass of the YOLO model.""" model = YOLO(CFG) model(source=None, imgsz=32, augment=True) # also test no source and augment def test_model_methods(): """Test various methods and properties of the YOLO model to ensure correct functionality.""" model = YOLO(MODEL) # Model methods model.info(verbose=True, detailed=True) model = model.reset_weights() model = model.load(MODEL) model.to("cpu") model.fuse() model.clear_callback("on_train_start") model.reset_callbacks() # Model properties _ = model.names _ = model.device _ = model.transforms _ = model.task_map def test_model_profile(): """Test profiling of the YOLO model with `profile=True` to assess performance and resource usage.""" from ultralytics.nn.tasks import DetectionModel model = DetectionModel() # build model im = torch.randn(1, 3, 64, 64) # requires min imgsz=64 _ = model.predict(im, profile=True) @pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable") def test_predict_txt(): """Test YOLO predictions with file, directory, and pattern sources listed in a text file.""" file = TMP / "sources_multi_row.txt" with open(file, "w") as f: for src in SOURCES_LIST: f.write(f"{src}\n") results = YOLO(MODEL)(source=file, imgsz=32) assert len(results) == 7 # 1 + 2 + 2 + 2 = 7 images @pytest.mark.skipif(True, reason="disabled for testing") @pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable") def test_predict_csv_multi_row(): """Test YOLO predictions with sources listed in multiple rows of a CSV file.""" file = TMP / "sources_multi_row.csv" with open(file, "w", newline="") as f: writer = csv.writer(f) writer.writerow(["source"]) writer.writerows([[src] for src in SOURCES_LIST]) results = YOLO(MODEL)(source=file, imgsz=32) assert len(results) == 7 # 1 + 2 + 2 + 2 = 7 images @pytest.mark.skipif(True, reason="disabled for testing") @pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable") def test_predict_csv_single_row(): """Test YOLO predictions with sources listed in a single row of a CSV file.""" file = TMP / "sources_single_row.csv" with open(file, "w", newline="") as f: writer = csv.writer(f) writer.writerow(SOURCES_LIST) results = YOLO(MODEL)(source=file, imgsz=32) assert len(results) == 7 # 1 + 2 + 2 + 2 = 7 images @pytest.mark.parametrize("model_name", MODELS) def test_predict_img(model_name): """Test YOLO model predictions on various image input types and sources, including online images.""" channels = 1 if model_name == "yolo11n-grayscale.pt" else 3 model = YOLO(WEIGHTS_DIR / model_name) im = cv2.imread(str(SOURCE), flags=cv2.IMREAD_GRAYSCALE if channels == 1 else cv2.IMREAD_COLOR) # uint8 numpy array assert len(model(source=Image.open(SOURCE), save=True, verbose=True, imgsz=32)) == 1 # PIL assert len(model(source=im, save=True, save_txt=True, imgsz=32)) == 1 # ndarray assert len(model(torch.rand((2, channels, 32, 32)), imgsz=32)) == 2 # batch-size 2 Tensor, FP32 0.0-1.0 RGB order assert len(model(source=[im, im], save=True, save_txt=True, imgsz=32)) == 2 # batch assert len(list(model(source=[im, im], save=True, stream=True, imgsz=32))) == 2 # stream assert len(model(torch.zeros(320, 640, channels).numpy().astype(np.uint8), imgsz=32)) == 1 # tensor to numpy batch = [ str(SOURCE), # filename Path(SOURCE), # Path "https://github.com/ultralytics/assets/releases/download/v0.0.0/zidane.jpg" if ONLINE else SOURCE, # URI im, # OpenCV Image.open(SOURCE), # PIL np.zeros((320, 640, channels), dtype=np.uint8), # numpy ] assert len(model(batch, imgsz=32, classes=0)) == len(batch) # multiple sources in a batch @pytest.mark.parametrize("model", MODELS) def test_predict_visualize(model): """Test model prediction methods with 'visualize=True' to generate and display prediction visualizations.""" YOLO(WEIGHTS_DIR / model)(SOURCE, imgsz=32, visualize=True) def test_predict_grey_and_4ch(): """Test YOLO prediction on SOURCE converted to greyscale and 4-channel images with various filenames.""" im = Image.open(SOURCE) directory = TMP / "im4" directory.mkdir(parents=True, exist_ok=True) source_greyscale = directory / "greyscale.jpg" source_rgba = directory / "4ch.png" source_non_utf = directory / "non_UTF_测试文件_tést_image.jpg" source_spaces = directory / "image with spaces.jpg" im.convert("L").save(source_greyscale) # greyscale im.convert("RGBA").save(source_rgba) # 4-ch PNG with alpha im.save(source_non_utf) # non-UTF characters in filename im.save(source_spaces) # spaces in filename # Inference model = YOLO(MODEL) for f in source_rgba, source_greyscale, source_non_utf, source_spaces: for source in Image.open(f), cv2.imread(str(f)), f: results = model(source, save=True, verbose=True, imgsz=32) assert len(results) == 1 # verify that an image was run f.unlink() # cleanup @pytest.mark.slow @pytest.mark.skipif(not ONLINE, reason="environment is offline") @pytest.mark.skipif(is_github_action_running(), reason="No auth https://github.com/JuanBindez/pytubefix/issues/166") def test_youtube(): """Test YOLO model on a YouTube video stream, handling potential network-related errors.""" model = YOLO(MODEL) try: model.predict("https://youtu.be/G17sBkb38XQ", imgsz=96, save=True) # Handle internet connection errors and 'urllib.error.HTTPError: HTTP Error 429: Too Many Requests' except (urllib.error.HTTPError, ConnectionError) as e: LOGGER.error(f"YouTube Test Error: {e}") @pytest.mark.skipif(not ONLINE, reason="environment is offline") @pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable") @pytest.mark.parametrize("model", MODELS) def test_track_stream(model): """ Test streaming tracking on a short 10 frame video using ByteTrack tracker and different GMC methods. Note imgsz=160 required for tracking for higher confidence and better matches. """ if model == "yolo11n-cls.pt": # classification model not supported for tracking return video_url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/decelera_portrait_min.mov" model = YOLO(model) model.track(video_url, imgsz=160, tracker="bytetrack.yaml") model.track(video_url, imgsz=160, tracker="botsort.yaml", save_frames=True) # test frame saving also # Test Global Motion Compensation (GMC) methods and ReID for gmc, reidm in zip(["orb", "sift", "ecc"], ["auto", "auto", "yolo11n-cls.pt"]): default_args = YAML.load(ROOT / "cfg/trackers/botsort.yaml") custom_yaml = TMP / f"botsort-{gmc}.yaml" YAML.save(custom_yaml, {**default_args, "gmc_method": gmc, "with_reid": True, "model": reidm}) model.track(video_url, imgsz=160, tracker=custom_yaml) @pytest.mark.parametrize("task,weight,data", TASK_MODEL_DATA) def test_val(task: str, weight: str, data: str) -> None: """Test the validation mode of the YOLO model.""" model = YOLO(weight) for plots in {True, False}: # Test both cases i.e. plots=True and plots=False metrics = model.val(data=data, imgsz=32, plots=plots) metrics.to_df() metrics.to_csv() metrics.to_xml() metrics.to_html() metrics.to_json() metrics.to_sql() metrics.confusion_matrix.to_df() # Tests for confusion matrix export metrics.confusion_matrix.to_csv() metrics.confusion_matrix.to_xml() metrics.confusion_matrix.to_html() metrics.confusion_matrix.to_json() metrics.confusion_matrix.to_sql() def test_train_scratch(): """Test training the YOLO model from scratch using the provided configuration.""" model = YOLO(CFG) model.train(data="coco8.yaml", epochs=2, imgsz=32, cache="disk", batch=-1, close_mosaic=1, name="model") model(SOURCE) @pytest.mark.parametrize("scls", [False, True]) def test_train_pretrained(scls): """Test training of the YOLO model starting from a pre-trained checkpoint.""" model = YOLO(WEIGHTS_DIR / "yolo11n-seg.pt") model.train( data="coco8-seg.yaml", epochs=1, imgsz=32, cache="ram", copy_paste=0.5, mixup=0.5, name=0, single_cls=scls ) model(SOURCE) def test_all_model_yamls(): """Test YOLO model creation for all available YAML configurations in the `cfg/models` directory.""" for m in (ROOT / "cfg" / "models").rglob("*.yaml"): if "rtdetr" in m.name: if TORCH_1_9: # torch<=1.8 issue - TypeError: __init__() got an unexpected keyword argument 'batch_first' _ = RTDETR(m.name)(SOURCE, imgsz=640) # must be 640 else: YOLO(m.name) @pytest.mark.skipif(WINDOWS, reason="Windows slow CI export bug https://github.com/ultralytics/ultralytics/pull/16003") def test_workflow(): """Test the complete workflow including training, validation, prediction, and exporting.""" model = YOLO(MODEL) model.train(data="coco8.yaml", epochs=1, imgsz=32, optimizer="SGD") model.val(imgsz=32) model.predict(SOURCE, imgsz=32) model.export(format="torchscript") # WARNING: Windows slow CI export bug def test_predict_callback_and_setup(): """Test callback functionality during YOLO prediction setup and execution.""" def on_predict_batch_end(predictor): """Callback function that handles operations at the end of a prediction batch.""" path, im0s, _ = predictor.batch im0s = im0s if isinstance(im0s, list) else [im0s] bs = [predictor.dataset.bs for _ in range(len(path))] predictor.results = zip(predictor.results, im0s, bs) # results is List[batch_size] model = YOLO(MODEL) model.add_callback("on_predict_batch_end", on_predict_batch_end) dataset = load_inference_source(source=SOURCE) bs = dataset.bs # noqa access predictor properties results = model.predict(dataset, stream=True, imgsz=160) # source already setup for r, im0, bs in results: print("test_callback", im0.shape) print("test_callback", bs) boxes = r.boxes # Boxes object for bbox outputs print(boxes) @pytest.mark.parametrize("model", MODELS) def test_results(model: str): """Test YOLO model results processing and output in various formats.""" temp_s = "https://ultralytics.com/images/boats.jpg" if model == "yolo11n-obb.pt" else SOURCE results = YOLO(WEIGHTS_DIR / model)([temp_s, temp_s], imgsz=160) for r in results: assert len(r), f"'{model}' results should not be empty!" r = r.cpu().numpy() print(r, len(r), r.path) # print numpy attributes r = r.to(device="cpu", dtype=torch.float32) r.save_txt(txt_file=TMP / "runs/tests/label.txt", save_conf=True) r.save_crop(save_dir=TMP / "runs/tests/crops/") r.to_df(decimals=3) # Align to_ methods: https://docs.ultralytics.com/modes/predict/#working-with-results r.to_csv() r.to_xml() r.to_html() r.to_json(normalize=True) r.to_sql() r.plot(pil=True, save=True, filename=TMP / "results_plot_save.jpg") r.plot(conf=True, boxes=True) print(r, len(r), r.path) # print after methods def test_labels_and_crops(): """Test output from prediction args for saving YOLO detection labels and crops.""" imgs = [SOURCE, ASSETS / "zidane.jpg"] results = YOLO(WEIGHTS_DIR / "yolo11n.pt")(imgs, imgsz=160, save_txt=True, save_crop=True) save_path = Path(results[0].save_dir) for r in results: im_name = Path(r.path).stem cls_idxs = r.boxes.cls.int().tolist() # Check correct detections assert cls_idxs == ([0, 7, 0, 0] if r.path.endswith("bus.jpg") else [0, 0, 0]) # bus.jpg and zidane.jpg classes # Check label path labels = save_path / f"labels/{im_name}.txt" assert labels.exists() # Check detections match label count assert len(r.boxes.data) == len([line for line in labels.read_text().splitlines() if line]) # Check crops path and files crop_dirs = list((save_path / "crops").iterdir()) crop_files = [f for p in crop_dirs for f in p.glob("*")] # Crop directories match detections assert all(r.names.get(c) in {d.name for d in crop_dirs} for c in cls_idxs) # Same number of crops as detections assert len([f for f in crop_files if im_name in f.name]) == len(r.boxes.data) @pytest.mark.skipif(not ONLINE, reason="environment is offline") def test_data_utils(): """Test utility functions in ultralytics/data/utils.py, including dataset stats and auto-splitting.""" from ultralytics.data.split import autosplit from ultralytics.data.utils import HUBDatasetStats from ultralytics.utils.downloads import zip_directory # from ultralytics.utils.files import WorkingDirectory # with WorkingDirectory(ROOT.parent / 'tests'): for task in TASKS: file = Path(TASK2DATA[task]).with_suffix(".zip") # i.e. coco8.zip download(f"https://github.com/ultralytics/hub/raw/main/example_datasets/{file}", unzip=False, dir=TMP) stats = HUBDatasetStats(TMP / file, task=task) stats.get_json(save=True) stats.process_images() autosplit(TMP / "coco8") zip_directory(TMP / "coco8/images/val") # zip @pytest.mark.skipif(not ONLINE, reason="environment is offline") def test_data_converter(): """Test dataset conversion functions from COCO to YOLO format and class mappings.""" from ultralytics.data.converter import coco80_to_coco91_class, convert_coco file = "instances_val2017.json" download(f"https://github.com/ultralytics/assets/releases/download/v0.0.0/{file}", dir=TMP) convert_coco(labels_dir=TMP, save_dir=TMP / "yolo_labels", use_segments=True, use_keypoints=False, cls91to80=True) coco80_to_coco91_class() def test_data_annotator(): """Test automatic annotation of data using detection and segmentation models.""" from ultralytics.data.annotator import auto_annotate auto_annotate( ASSETS, det_model=WEIGHTS_DIR / "yolo11n.pt", sam_model=WEIGHTS_DIR / "mobile_sam.pt", output_dir=TMP / "auto_annotate_labels", ) def test_events(): """Test event sending functionality.""" from ultralytics.hub.utils import Events events = Events() events.enabled = True cfg = copy(DEFAULT_CFG) # does not require deepcopy cfg.mode = "test" events(cfg) def test_cfg_init(): """Test configuration initialization utilities from the 'ultralytics.cfg' module.""" from ultralytics.cfg import check_dict_alignment, copy_default_cfg, smart_value with contextlib.suppress(SyntaxError): check_dict_alignment({"a": 1}, {"b": 2}) copy_default_cfg() (Path.cwd() / DEFAULT_CFG_PATH.name.replace(".yaml", "_copy.yaml")).unlink(missing_ok=False) [smart_value(x) for x in {"none", "true", "false"}] def test_utils_init(): """Test initialization utilities in the Ultralytics library.""" from ultralytics.utils import get_git_branch, get_git_origin_url, get_ubuntu_version, is_github_action_running get_ubuntu_version() is_github_action_running() get_git_origin_url() get_git_branch() def test_utils_checks(): """Test various utility checks for filenames, git status, requirements, image sizes, and versions.""" checks.check_yolov5u_filename("yolov5n.pt") checks.git_describe(ROOT) checks.check_requirements() # check requirements.txt checks.check_imgsz([600, 600], max_dim=1) checks.check_imshow(warn=True) checks.check_version("ultralytics", "8.0.0") checks.print_args() @pytest.mark.skipif(WINDOWS, reason="Windows profiling is extremely slow (cause unknown)") def test_utils_benchmarks(): """Benchmark model performance using 'ProfileModels' from 'ultralytics.utils.benchmarks'.""" from ultralytics.utils.benchmarks import ProfileModels ProfileModels(["yolo11n.yaml"], imgsz=32, min_time=1, num_timed_runs=3, num_warmup_runs=1).run() def test_utils_torchutils(): """Test Torch utility functions including profiling and FLOP calculations.""" from ultralytics.nn.modules.conv import Conv from ultralytics.utils.torch_utils import get_flops_with_torch_profiler, profile_ops, time_sync x = torch.randn(1, 64, 20, 20) m = Conv(64, 64, k=1, s=2) profile_ops(x, [m], n=3) get_flops_with_torch_profiler(m) time_sync() def test_utils_ops(): """Test utility operations for coordinate transformations and normalizations.""" from ultralytics.utils.ops import ( ltwh2xywh, ltwh2xyxy, make_divisible, xywh2ltwh, xywh2xyxy, xywhn2xyxy, xywhr2xyxyxyxy, xyxy2ltwh, xyxy2xywh, xyxy2xywhn, xyxyxyxy2xywhr, ) make_divisible(17, torch.tensor([8])) boxes = torch.rand(10, 4) # xywh torch.allclose(boxes, xyxy2xywh(xywh2xyxy(boxes))) torch.allclose(boxes, xyxy2xywhn(xywhn2xyxy(boxes))) torch.allclose(boxes, ltwh2xywh(xywh2ltwh(boxes))) torch.allclose(boxes, xyxy2ltwh(ltwh2xyxy(boxes))) boxes = torch.rand(10, 5) # xywhr for OBB boxes[:, 4] = torch.randn(10) * 30 torch.allclose(boxes, xyxyxyxy2xywhr(xywhr2xyxyxyxy(boxes)), rtol=1e-3) def test_utils_files(): """Test file handling utilities including file age, date, and paths with spaces.""" from ultralytics.utils.files import file_age, file_date, get_latest_run, spaces_in_path file_age(SOURCE) file_date(SOURCE) get_latest_run(ROOT / "runs") path = TMP / "path/with spaces" path.mkdir(parents=True, exist_ok=True) with spaces_in_path(path) as new_path: print(new_path) @pytest.mark.slow def test_utils_patches_torch_save(): """Test torch_save backoff when _torch_save raises RuntimeError.""" from unittest.mock import MagicMock, patch from ultralytics.utils.patches import torch_save mock = MagicMock(side_effect=RuntimeError) with patch("ultralytics.utils.patches._torch_save", new=mock): with pytest.raises(RuntimeError): torch_save(torch.zeros(1), TMP / "test.pt") assert mock.call_count == 4, "torch_save was not attempted the expected number of times" def test_nn_modules_conv(): """Test Convolutional Neural Network modules including CBAM, Conv2, and ConvTranspose.""" from ultralytics.nn.modules.conv import CBAM, Conv2, ConvTranspose, DWConvTranspose2d, Focus c1, c2 = 8, 16 # input and output channels x = torch.zeros(4, c1, 10, 10) # BCHW # Run all modules not otherwise covered in tests DWConvTranspose2d(c1, c2)(x) ConvTranspose(c1, c2)(x) Focus(c1, c2)(x) CBAM(c1)(x) # Fuse ops m = Conv2(c1, c2) m.fuse_convs() m(x) def test_nn_modules_block(): """Test various neural network block modules.""" from ultralytics.nn.modules.block import C1, C3TR, BottleneckCSP, C3Ghost, C3x c1, c2 = 8, 16 # input and output channels x = torch.zeros(4, c1, 10, 10) # BCHW # Run all modules not otherwise covered in tests C1(c1, c2)(x) C3x(c1, c2)(x) C3TR(c1, c2)(x) C3Ghost(c1, c2)(x) BottleneckCSP(c1, c2)(x) @pytest.mark.skipif(not ONLINE, reason="environment is offline") def test_hub(): """Test Ultralytics HUB functionalities.""" from ultralytics.hub import export_fmts_hub, logout from ultralytics.hub.utils import smart_request export_fmts_hub() logout() smart_request("GET", "https://github.com", progress=True) @pytest.fixture def image(): """Load and return an image from a predefined source.""" return cv2.imread(str(SOURCE)) @pytest.mark.parametrize( "auto_augment, erasing, force_color_jitter", [ (None, 0.0, False), ("randaugment", 0.5, True), ("augmix", 0.2, False), ("autoaugment", 0.0, True), ], ) def test_classify_transforms_train(image, auto_augment, erasing, force_color_jitter): """Test classification transforms during training with various augmentations.""" from ultralytics.data.augment import classify_augmentations transform = classify_augmentations( size=224, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), scale=(0.08, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0), hflip=0.5, vflip=0.5, auto_augment=auto_augment, hsv_h=0.015, hsv_s=0.4, hsv_v=0.4, force_color_jitter=force_color_jitter, erasing=erasing, ) transformed_image = transform(Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))) assert transformed_image.shape == (3, 224, 224) assert torch.is_tensor(transformed_image) assert transformed_image.dtype == torch.float32 @pytest.mark.slow @pytest.mark.skipif(not ONLINE, reason="environment is offline") def test_model_tune(): """Tune YOLO model for performance improvement.""" YOLO("yolo11n-pose.pt").tune(data="coco8-pose.yaml", plots=False, imgsz=32, epochs=1, iterations=2, device="cpu") YOLO("yolo11n-cls.pt").tune(data="imagenet10", plots=False, imgsz=32, epochs=1, iterations=2, device="cpu") def test_model_embeddings(): """Test YOLO model embeddings extraction functionality.""" model_detect = YOLO(MODEL) model_segment = YOLO(WEIGHTS_DIR / "yolo11n-seg.pt") for batch in [SOURCE], [SOURCE, SOURCE]: # test batch size 1 and 2 assert len(model_detect.embed(source=batch, imgsz=32)) == len(batch) assert len(model_segment.embed(source=batch, imgsz=32)) == len(batch) @pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="YOLOWorld with CLIP is not supported in Python 3.12") @pytest.mark.skipif( checks.IS_PYTHON_3_8 and LINUX and ARM64, reason="YOLOWorld with CLIP is not supported in Python 3.8 and aarch64 Linux", ) def test_yolo_world(): """Test YOLO world models with CLIP support.""" model = YOLO(WEIGHTS_DIR / "yolov8s-world.pt") # no YOLO11n-world model yet model.set_classes(["tree", "window"]) model(SOURCE, conf=0.01) model = YOLO(WEIGHTS_DIR / "yolov8s-worldv2.pt") # no YOLO11n-world model yet # Training from a pretrained model. Eval is included at the final stage of training. # Use dota8.yaml which has fewer categories to reduce the inference time of CLIP model model.train( data="dota8.yaml", epochs=1, imgsz=32, cache="disk", close_mosaic=1, ) # test WorWorldTrainerFromScratch from ultralytics.models.yolo.world.train_world import WorldTrainerFromScratch model = YOLO("yolov8s-worldv2.yaml") # no YOLO11n-world model yet model.train( data={"train": {"yolo_data": ["dota8.yaml"]}, "val": {"yolo_data": ["dota8.yaml"]}}, epochs=1, imgsz=32, cache="disk", close_mosaic=1, trainer=WorldTrainerFromScratch, ) @pytest.mark.skipif(checks.IS_PYTHON_3_12 or not TORCH_1_9, reason="YOLOE with CLIP is not supported in Python 3.12") @pytest.mark.skipif( checks.IS_PYTHON_3_8 and LINUX and ARM64, reason="YOLOE with CLIP is not supported in Python 3.8 and aarch64 Linux", ) def test_yoloe(): """Test YOLOE models with MobileClip support.""" # Predict # text-prompts model = YOLO(WEIGHTS_DIR / "yoloe-11s-seg.pt") names = ["person", "bus"] model.set_classes(names, model.get_text_pe(names)) model(SOURCE, conf=0.01) import numpy as np from ultralytics import YOLOE from ultralytics.models.yolo.yoloe import YOLOEVPSegPredictor # visual-prompts visuals = dict( bboxes=np.array( [[221.52, 405.8, 344.98, 857.54], [120, 425, 160, 445]], ), cls=np.array([0, 1]), ) model.predict( SOURCE, visual_prompts=visuals, predictor=YOLOEVPSegPredictor, ) # Val model = YOLOE(WEIGHTS_DIR / "yoloe-11s-seg.pt") # text prompts model.val(data="coco128-seg.yaml", imgsz=32) # visual prompts model.val(data="coco128-seg.yaml", load_vp=True, imgsz=32) # Train, fine-tune from ultralytics.models.yolo.yoloe import YOLOEPESegTrainer model = YOLOE("yoloe-11s-seg.pt") model.train( data="coco128-seg.yaml", epochs=1, close_mosaic=1, trainer=YOLOEPESegTrainer, imgsz=32, ) # prompt-free # predict model = YOLOE(WEIGHTS_DIR / "yoloe-11s-seg-pf.pt") model.predict(SOURCE) # val model = YOLOE("yoloe-11s-seg.pt") # or select yoloe-m/l-seg.pt for different sizes model.val(data="coco128-seg.yaml", imgsz=32) def test_yolov10(): """Test YOLOv10 model training, validation, and prediction functionality.""" model = YOLO("yolov10n.yaml") # train/val/predict model.train(data="coco8.yaml", epochs=1, imgsz=32, close_mosaic=1, cache="disk") model.val(data="coco8.yaml", imgsz=32) model.predict(imgsz=32, save_txt=True, save_crop=True, augment=True) model(SOURCE) def test_multichannel(): """Test YOLO model multi-channel training, validation, and prediction functionality.""" model = YOLO("yolo11n.pt") model.train(data="coco8-multispectral.yaml", epochs=1, imgsz=32, close_mosaic=1, cache="disk") model.val(data="coco8-multispectral.yaml") im = np.zeros((32, 32, 10), dtype=np.uint8) model.predict(source=im, imgsz=32, save_txt=True, save_crop=True, augment=True) model.export(format="onnx") @pytest.mark.parametrize("task,model,data", TASK_MODEL_DATA) def test_grayscale(task: str, model: str, data: str) -> None: """Test YOLO model grayscale training, validation, and prediction functionality.""" if task == "classify": # not support grayscale classification yet return grayscale_data = Path(TMP) / f"{Path(data).stem}-grayscale.yaml" data = check_det_dataset(data) data["channels"] = 1 # add additional channels key for grayscale YAML.save(grayscale_data, data) # remove npy files in train/val splits if exists, might be created by previous tests for split in {"train", "val"}: for npy_file in (Path(data["path"]) / data[split]).glob("*.npy"): npy_file.unlink() model = YOLO(model) model.train(data=grayscale_data, epochs=1, imgsz=32, close_mosaic=1) model.val(data=grayscale_data) im = np.zeros((32, 32, 1), dtype=np.uint8) model.predict(source=im, imgsz=32, save_txt=True, save_crop=True, augment=True) export_model = model.export(format="onnx") model = YOLO(export_model, task=task) model.predict(source=im, imgsz=32) 代码分析
08-13
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值