垃圾收集器可以分为三类
- 新生代:Serial PraNew Parallel Scavenge
- 老年代:Serial Old Parallel Old CMS
- 回收整个Java堆(新生代和老年代):G1
可以实现的排列组合为:
新生代垃圾收集器
1.Serial串行收集器-复制算法
Serial收集器是新生代单线程收集器,优点是简单高效,算是最基本、发展历史最悠久的收集器。它在进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集完成。
Serial收集器依然是虚拟机运行在Client模式下默认新生代收集器,对于运行在Client模式下的虚拟机来说是一个很好的选择。
2.ParNew收集器-复制算法
ParNew收集器是新生代并行收集器,其实就是Serial收集器的多线程版本。
除了使用多线程进行垃圾收集之外,其余行为包括Serial收集器可用的所有控制参数、收集算法、Stop The Worl、对象分配规则、回收策略等都与Serial 收集器完全一样。
3.Parallel Scavenge(并行回收)收集器-复制算法
Parallel Scavenge收集器是新生代并行收集器,追求高吞吐量,高效利用 CPU。
该收集器的目标是达到一个可控制的吞吐量(Throughput)。所谓吞吐量就是CPU用于运行用户代码的时间与CPU总消耗时间的比值,即 吞吐量=运行用户代码时间/(运行用户代码时间+垃圾收集时间)
停顿时间越短就越适合需要与用户交互的程序,良好的响应速度能提升用户体验,而高吞吐量则可用高效率地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。
老年代垃圾收集器
1.Serial Old 收集器-标记整理算法
Serial Old是Serial收集器的老年代版本,它同样是一个单线程(串行)收集器,使用标记整理算法。这个收集器的主要意义也是在于给Client模式下的虚拟机使用。
如果在Server模式下,主要两大用途:
(1)在JDK1.5以及之前的版本中与Parallel Scavenge收集器搭配使用
(2)作为CMS收集器的后备预案,在并发收集发生Concurrent Mode Failure时使用
2.Parallel Old 收集器-标记整理算法
Parallel Old 是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。这个收集器在1.6中才开始提供。
3.CMS收集器-标记清除算法
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。
目前很大一部分的Java应用集中在互联网站或者B/S系统的服务端上,这类应用尤其重视服务器的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS收集器就非常符合这类应用的需求。
CMS收集器是基于“标记-清除”算法实现的,它的运作过程相对前面几种收集器来说更复杂一些,整个过程分为4个步骤:
(1)初始标记;
(2)并发标记;
(3)重新标记;
(4)并发清除。
其中,初始标记、重新标记这两个步骤仍然需要“Stop The World”
CMS收集器主要优点:
- 并发收集;
- 低停顿。
CMS三个明显的缺点:
(1)耗cpu资源
(2)CMS收集器无法处理浮动垃圾,可能出现“Concurrent Mode Failure”失败而导致另一次Full GC的产生。在JDK1.5的默认设置下,CMS收集器当老年代使用了68%的空间后就会被激活。
(3)CMS是基于“标记-清除”算法实现的收集器,手机结束时会有大量空间碎片产生。空间碎片过多,可能会出现老年代还有很大空间剩余,但是无法找到足够大的连续空间来分配当前对象,不得不提前出发FullGC。
G1
G1之前的JVM内存模型
- 新生代:伊甸园区(eden space) + 2个幸存区
- 老年代
- 持久代(perm space):JDK1.8之前
- 元空间(metaspace):JDK1.8之后取代持久代
G1收集器的内存模型
G1堆内存结构
堆内存会被切分成为很多个固定大小区域(Region),每个是连续范围的虚拟内存。
堆内存中一个区域(Region)的大小可以通过-XX:G1HeapRegionSize参数指定,大小区间最小1M、最大32M,总之是2的幂次方。
默认把堆内存按照2048份均分。
G1堆内存分配
每个Region被标记了E、S、O和H,这些区域在逻辑上被映射为Eden,Survivor和老年代。
存活的对象从一个区域转移(即复制或移动)到另一个区域。区域被设计为并行收集垃圾,可能会暂停所有应用线程。
如上图所示,区域可以分配到Eden,survivor和老年代。此外,还有第四种类型,被称为巨型区域(Humongous Region)。Humongous区域是为了那些存储超过50%标准region大小的对象而设计的,它用来专门存放巨型对象。如果一个H区装不下一个巨型对象,那么G1会寻找连续的H分区来存储。为了能找到连续的H区,有时候不得不启动Full GC。
G1回收流程
在执行垃圾收集时,G1以类似于CMS收集器的方式运行。
G1收集器的阶段分以下几个步骤:
1)G1执行的第一阶段:初始标记(Initial Marking )
这个阶段是STW(Stop the World )的,所有应用线程会被暂停,标记出从GC Root开始直接可达的对象。
2)G1执行的第二阶段:并发标记
从GC Roots开始对堆中对象进行可达性分析,找出存活对象,耗时较长。当并发标记完成后,开始最终标记(Final Marking )阶段
3)最终标记
标记那些在并发标记阶段发生变化的对象,将被回收。
4)筛选回收
首先对各个Regin的回收价值和成本进行排序,根据用户所期待的GC停顿时间指定回收计划,回收一部分Region。
最后,G1中提供了两种模式垃圾回收模式,Young GC和Mixed GC,两种都是Stop The World(STW)的。
G1的GC模式
1.YoungGC年轻代收集
在分配一般对象(非巨型对象)时,当所有eden region使用达到最大阀值并且无法申请足够内存时,会触发一次YoungGC。每次younggc会回收所有Eden以及Survivor区,并且将存活对象复制到Old区以及另一部分的Survivor区。
YoungGC的回收过程如下:
- 根扫描,跟CMS类似,Stop the world,扫描GC Roots对象。
- 处理Dirty card,更新RSet.
- 扫描RSet,扫描RSet中所有old区对扫描到的young区或者survivor去的引用。
- 拷贝扫描出的存活的对象到survivor2/old区
- 处理引用队列,软引用,弱引用,虚引用
2. mixed gc
当越来越多的对象晋升到老年代old region时,为了避免堆内存被耗尽,虚拟机会触发一个混合的垃圾收集器,即mixed gc,该算法并不是一个old gc,除了回收整个young region,还会回收一部分的old region,这里需要注意:是一部分老年代,而不是全部老年代,可以选择哪些old region进行收集,从而可以对垃圾回收的耗时时间进行控制。
G1没有fullGC概念,需要fullGC时,调用serialOldGC进行全堆扫描(包括eden、survivor、o、perm)。
G1的推荐用例
G1的第一个重要特点是为用户的应用程序的提供一个低GC延时和大内存GC的解决方案。这意味着堆大小6GB或更大,稳定和可预测的暂停时间将低于0.5秒。
如果应用程序使用CMS或ParallelOld垃圾回收器具有一个或多个以下特征,将有利于切换到G1:
- Full GC持续时间太长或太频繁
- 对象分配率或年轻代升级老年代很频繁
- 不期望的很长的垃圾收集时间或压缩暂停(超过0.5至1秒)
注意:如果你正在使用CMS或ParallelOld收集器,并且你的应用程序没有遇到长时间的垃圾收集暂停,则保持与您的当前收集器是很好的,升级JDK并不必要更新收集器为G1。
g1更多参考:http://blog.jobbole.com/109170/
配置垃圾回收器参数
-XX:+UseSerialGC:在新生代和老年代使用串行收集器
-XX:+UseParNewGC:在新生代使用并行收集器
-XX:+UseParallelGC :新生代使用并行回收收集器,更加关注吞吐量
-XX:+UseParallelOldGC:老年代使用并行回收收集器
-XX:ParallelGCThreads:设置用于垃圾回收的线程数
-XX:+UseConcMarkSweepGC:新生代使用并行收集器,老年代使用CMS+串行收集器
-XX:ParallelCMSThreads:设定CMS的线程数量
-XX:+UseG1GC:启用G1垃圾回收器