和之前做过的fzu的一道线段树维护的内容恰好相反
这题求的是覆盖次数大于等于2的面积
思路:维护两个值,一个是覆盖次数大于等于1的面积,一个是覆盖次数大于等于2的面积
然后在push_up的时候仔细分析一下,想清楚更新顺序就做完了..
#include<map>
#include<set>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define root 1,rear,1
int const MX = 1e4 + 5;
int rear, cnt[MX << 2];
double A[MX], S1[MX << 2], S2[MX << 2];
struct Que {
int d;
double top, L, R;
Que() {}
Que(double _top, double _L, double _R, int _d) {
top = _top; L = _L; R = _R; d = _d;
}
bool operator<(const Que &b)const {
return top < b.top;
}
} Q[MX];
int BS(double x) {
int L = 1, R = rear, m;
while(L <= R) {
m = (L + R) >> 1;
if(A[m] == x) return m;
if(A[m] > x) R = m - 1;
else L = m + 1;
}
return -1;
}
void push_up(int l, int r, int rt) {
if(cnt[rt]) {
S1[rt] = A[r + 1] - A[l];
if(cnt[rt] == 1) {
S2[rt] = S1[rt << 1] + S1[rt << 1 | 1];
} else S2[rt] = S1[rt];
} else if(l == r) S1[rt] = S2[rt] = 0;
else {
S1[rt] = S1[rt << 1] + S1[rt << 1 | 1];
S2[rt] = S2[rt << 1] + S2[rt << 1 | 1];
}
}
void update(int L, int R, int d, int l, int r, int rt) {
if(L <= l && r <= R) {
cnt[rt] += d;
push_up(l, r, rt);
return;
}
int m = (l + r) >> 1;
if(L <= m) update(L, R, d, lson);
if(R > m) update(L, R, d, rson);
push_up(l, r, rt);
}
int main() {
//freopen("input.txt", "r", stdin);
int n, T;
scanf("%d", &T);
while(T--) {
rear = 0;
memset(cnt, 0, sizeof(cnt));
memset(S1, 0, sizeof(S1));
memset(S2, 0, sizeof(S2));
scanf("%d", &n);
for(int i = 1; i <= n; i++) {
double x1, y1, x2, y2;
scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
Q[i] = Que(y1, x1, x2, 1);
Q[i + n] = Que(y2, x1, x2, -1);
A[++rear] = x1; A[++rear] = x2;
}
sort(Q + 1, Q + 1 + 2 * n);
sort(A + 1, A + 1 + rear);
rear = unique(A + 1, A + 1 + rear) - A - 1;
double ans = 0, last = 0;
for(int i = 1; i <= 2 * n; i++) {
ans += (Q[i].top - last) * S2[1];
update(BS(Q[i].L), BS(Q[i].R) - 1, Q[i].d, root);
last = Q[i].top;
}
printf("%.2lf\n", ans);
}
return 0;
}