Linux电源管理(2)_Generic PM之基本概念和软件架构

本文介绍了计算机电源管理中的Generic PM概念,包括关机、重启、冬眠和睡眠等操作,并阐述了其与Runtime PM的区别。此外,还详细解析了Linux内核中Generic PM的软件架构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



转自http://www.wowotech.net/pm_subsystem/generic_pm_architecture.html

作者:wowo 发布于:2014-5-13 19:24 分类:电源管理子系统


1. 前言

 Generic PM指常规的电源管理手段,包括关机(Power off)、待机(Standby or Hibernate)、重启(Reboot)等。

开始之前,先解释一下这些词汇的意义。

Shutdown是关机的意思,同时意味着不再使用计算机

Restart是重启系统的意思,重启的过程就不再使用计算机

Hibernate,可翻译为冬眠。在不需要使用计算机时将它当前的所有现场(执行的程序、显示器显示的图像、正在播放的声音等)保存到一些断电不会丢失的存储器中(如硬盘中),然后将计算机关闭。重新开启后,系统会从存储器中将关闭前的现场读取出来并恢复,此时从使用者的角度看,计算机就像没有关闭过一样。   

Sleep,睡眠。想象一下“睡眠”和“冬眠”的区别?“睡眠”睡的轻,随时都可以醒来。在计算机中,Hibernate需要把现场保存到断电不丢失的存储器中,并在醒来的时候读回来,这些可能需要较长的时间(因为断电不丢失存储器的访问速度都比较慢)。如果想快点,就把现场保存在内存中就可以了,这就是Sleep。不过这是要付出代价的,内存要保持供电,这就要消耗能量,鱼与熊掌不可兼得啊!

AGeneric PM是针对的整个系统,根据系统的状态进行调整,而Runtime PM 针对的是系统中的单个设备,根据设备的状态进行调整,具有较高的独立性。uto Sleep,可以设置系统“处于Inactive状态多久后,自动进入Sleep状态”。为了避免这无谓的消耗,可以让系统在符合条件时(如20分钟不使用),自动睡下去。

Auto put display to Sleep,原理类似,只是操作的对象是Display(显示器等)。

 

注:

不知读者有没有注意到,蜗蜗在解释上面的词汇时,一直在用红色字体强调“计算机不再使用”。这就是Generic PM和Runtime PM的本质区别,即在使用者的主观意愿上,是否需要暂停使用计算机(哪怕短短的一段时间)。 这也是Generic PM在传统的计算机操作系统中被广泛使用的原因,因为那个时候对计算机的使用大多是主动方式。而对当前的移动互联来说,就非常不合时宜了,因为人们需要移动设备实时在线、实时接收被动事件(如来电),也就不可能主观地暂停使用(哪怕短短的一段时间)。这种最终需求的差异,会导致在软件设计上有很大的差别,正因为如此,Runtime PM的出现和尽快成熟,才显得格外重要。


Generic PM是针对的整个系统,根据系统的状态进行调整;而Runtime PM 针对的是系统中的单个设备,根据设备的状态进行调整,在需要使用的时候打开,不需要使用的时候关闭,具有较高的独立性。

2. Generic PM的软件架构

在介绍完Generic PM的基本概念后,我们来看一下它在Linux内核中的整体实现,并抽象出简单的软件架构,以便再后续的文章中,对Generic PM的主要组成部分进行更为细致的分析。具体如下:

Generic PM Architecture

根据上面的描述可知,Generic PM主要处理关机、重启、冬眠(Hibernate)、睡眠(Sleep,在Kernel中也称作Suspend)。在内核中,大致可以分为三个软件层次:

API Layer,用于向用户空间提供接口,其中关机和重启的接口形式是系统调用(在新的内核中,关机接口还有一种新方式,具体讲到的时候再说),Hibernate和Suspend的接口形式是sysfs。

PM Core,位于kernel/power/目录下,主要处理和硬件无关的核心逻辑。

PM Driver,分为两个部分,一是体系结构无关的Driver,提供Driver框架(Framework)。另一部分是具体的体系结构相关的Driver,这也是电源管理驱动开发需要涉及到的内容(图中红色边框的模块)。

内容概要:该PPT详细介绍了企业架构设计的方法论,涵盖业务架构、数据架构、应用架构技术架构四大核心模块。首先分析了企业架构现状,包括业务、数据、应用技术四大架构的内容关系,明确了企业架构设计的重要性。接着,阐述了新版企业架构总体框架(CSG-EAF 2.0)的形成过程,强调其融合了传统架构设计(TOGAF)领域驱动设计(DDD)的优势,以适应数字化转型需求。业务架构部分通过梳理企业级专业级价值流,细化业务能力、流程对象,确保业务战略的有效落地。数据架构部分则遵循五大原则,确保数据的准确、一致高效使用。应用架构方面,提出了分层解耦服务化的设计原则,以提高灵活性响应速度。最后,技术架构部分围绕技术框架、组件、平台部署节点进行了详细设计,确保技术架构的稳定性扩展性。 适合人群:适用于具有一定企业架构设计经验的IT架构师、项目经理业务分析师,特别是那些希望深入了解如何将企业架构设计与数字化转型相结合的专业人士。 使用场景及目标:①帮助企业组织梳理业务流程,优化业务能力,实现战略目标;②指导数据管理应用开发,确保数据的一致性应用的高效性;③为技术选型系统部署提供科学依据,确保技术架构的稳定性扩展性。 阅读建议:此资源内容详尽,涵盖企业架构设计的各个方面。建议读者在学习过程中,结合实际案例进行理解实践,重点关注各架构模块之间的关联协同,以便更好地应用于实际工作中。
资 源 简 介 独立分量分析(Independent Component Analysis,简称ICA)是近二十年来逐渐发展起来的一种盲信号分离方法。它是一种统计方法,其目的是从由传感器收集到的混合信号中分离相互独立的源信号,使得这些分离出来的源信号之间尽可能独立。它在语音识别、电信医学信号处理等信号处理方面有着广泛的应用,目前已成为盲信号处理,人工神经网络等研究领域中的一个研究热点。本文简要的阐述了ICA的发展、应用现状,详细地论述了ICA的原理及实现过程,系统地介绍了目前几种主要ICA算法以及它们之间的内在联系, 详 情 说 明 独立分量分析(Independent Component Analysis,简称ICA)是近二十年来逐渐发展起来的一种盲信号分离方法。它是一种统计方法,其目的是从由传感器收集到的混合信号中分离相互独立的源信号,使得这些分离出来的源信号之间尽可能独立。它在语音识别、电信医学信号处理等信号处理方面有着广泛的应用,目前已成为盲信号处理,人工神经网络等研究领域中的一个研究热点。 本文简要的阐述了ICA的发展、应用现状,详细地论述了ICA的原理及实现过程,系统地介绍了目前几种主要ICA算法以及它们之间的内在联系,在此基础上重点分析了一种快速ICA实现算法一FastICA。物质的非线性荧光谱信号可以看成是由多个相互独立的源信号组合成的混合信号,而这些独立的源信号可以看成是光谱的特征信号。为了更好的了解光谱信号的特征,本文利用独立分量分析的思想方法,提出了利用FastICA算法提取光谱信号的特征的方案,并进行了详细的仿真实验。 此外,我们还进行了进一步的研究,探索了其他可能的ICA应用领域,如音乐信号处理、图像处理以及金融数据分析等。通过在这些领域中的实验应用,我们发现ICA在提取信号特征、降噪信号分离等方面具有广泛的潜力应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值