这里只是介绍下R语言中如何使用最小二乘法解决一次函数的线性回归问题。
代码如下:(数据同上一篇博客)(是不是很简单????)
> x<-c(6.19,2.51,7.29,7.01,5.7,2.66,3.98,2.5,9.1,4.2) > y<-c(5.25,2.83,6.41,6.71,5.1,4.23,5.05,1.98,10.5,6.3) > lsfit(x,y)
结果如下:
$coefficients Intercept X 0.8310557 0.9004584
说明: Intercept :截距
X: 变量x的系数